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Abstract— Despite being the only reliable way to assess the impact 

of future ATM solutions, the complexity of large-scale, bottom-up 

microsimulation models is often a barrier for their effective use to 

support decision-making. As a consequence, in many cases the 

simulations are limited to one or few particular days, usually 

selected based on expert judgement and/or simple rule-of-thumb 

criteria (e.g., simulate the day with the highest number of 

scheduled flights). This may not be representative of the impact of 

a given operational improvement under all possible traffic 

scenarios, especially considering the extreme complexity of the 

European airspace, with significantly different traffic flows on 

different days of the year in terms of traffic conditions. Hence, a 

realistic representation of traffic demand patterns is an essential 

condition for a comprehensive evaluation of new concepts, which 

may deliver very different performance gains depending on the 

level of traffic density and complexity. This paper proposes a 

methodology for the identification of traffic patterns and the 

selection of representative traffic samples (representative days) for 

the assessment of a specific ATM performance problem.  

Keywords-ATM; traffic patterns; machine learning; clustering; 

k-means  

I.  INTRODUCTION  

The extreme complexity of the European air transport 

network, with more than 30,000 flights per day, leads to 

significantly different traffic demand patterns on different days 

of the year. Moreover, some days may present very similar 

patterns for certain parts of the network or times of the day, 

while being very different for others. 

For many applications, for which simulation is the only way 

of assessing performance at network level, a realistic 

representation of traffic demand patterns is an essential 

condition for a comprehensive assessment of new solutions and 

concepts, which may display very different performance levels 

depending on the traffic conditions. Due to the high complexity 

of air traffic simulations, in many cases they only allow the 

exploration of a reduced number of traffic scenarios, usually 

selected based on expert judgment or rule-of-thumb criteria, 

which may not be representative of the variety of existing traffic 

patterns in real-world operations. It is thus important to identify 

representative traffic patterns at different spatial scales, which 

are as realistic as possible and enable a comprehensive 

evaluation of new solutions and concepts.  

The problem of air traffic pattern classification has been 

studied for some time in ATM. Different approaches employing 

a variety of classification variables and clustering techniques 

have been proposed in the literature. Some studies, for instance, 

find traffic patterns based on traffic flows [1], [2] or according 

to weather conditions [3]. Other studies classify traffic patterns 

based on a combination of weather data, ATM data (including 

sectorization and occupancy counts), and trajectory data [4], 

[5]. It is remarkable that most research in this field has so far 

been developed in the US and focuses on the Federal Aviation 

Administration (FAA) ATM system, with almost no relevant 

work addressing the same problem for the European network. 

This paper presents a methodology for the identification of 

traffic patterns and the selection of representative traffic 

samples in the European airspace for the assessment of the 

performance impact of a certain operational concept [6]. The 

proposed methodology is demonstrated and validated through 

two case studies in which traffic patterns and traffic samples are 

identified for SESAR’s Free-Routing (FR) and Demand and 

Capacity Balancing (DCB) solutions at three different 

geographical scales, namely at ECAC, ANSP, and ACC level. 

The rest of the paper is structured as follows. Section II 

describes the proposed methodology. Section III shows the 

application of the methodology to each case study. Section IV 

presents the results obtained. Finally, Section V discusses the 

main conclusions of the study. 

II. METHODOLOGY 

The proposed methodology is the following: 

1. Definition of relevant scenarios and traffic features for the 

specific problem under study. This step includes the 

identification of the traffic features and performance 

indicators that are representative of the operational 

problem under study. To obtain more robust patterns, 

several statistics of these variables are computed, including 

average, standard deviation, sum, minimum, maximum, 

mode, percentile 25, median, percentile 75, percentile 90, 

percentile 95, skewness, and kurtosis.  
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2. Data analysis. This step includes all the usual data 

pre-processing tasks (data cleansing, correlation analysis, 

feature selection, etc.)  

3. Application of clustering algorithms for the identification 

of the traffic patterns. In this study, the k-means algorithm 

was used [7]. 

4. Technical evaluation of the results, using assessment 

scores to evaluate the inter-cluster and intra-cluster 

similarity. The silhouette score, the Davies-Bouldin score, 

and the Calinski-Harabasz score are computed, and the 

number of clusters with the best trade-off between them is 

selected. The silhouette score measures how dense and 

separated the clusters are. Their values are bounded in the 

interval [-1, 1], where higher values relate to good 

clustering results. The Davies-Bouldin score measures how 

compact and far from each other the clusters are. Low 

values of this score relate to good clustering separation. 
The Calinski-Harabasz score measures how similar an 

instance is to its own cluster compared to the other clusters. 

High values of this metric relate to good clustering 

separation. 

5. Interpretation of the results. The results obtained are 

interpreted by analyzing the distribution of the identified 

variables within each cluster. Also, the clusters are 

depicted in a calendar plot in which each day is colored by 

cluster belonging. Finally, two temporal binary variables 

are defined to perform a temporal analysis of the clusters 

obtained. These variables indicate whether the day is a 

weekend day or not and whether it belongs to the IATA 

summer season (starting on the last Saturday of March and 

ending on the last Saturday of October) or to the IATA 

winter season (comprising the rest of the year). 

6. Selection of the traffic samples. In order to consider the 

most representative days in the traffic sample, two days per 

cluster are considered: the one with the highest silhouette 

score (which ensures that the cluster is well represented) 

and the one with the lowest silhouette score (which ensures 

that the sample also considers potential deviations from the 

cluster centroid). 

In order to illustrate the application of this methodology, 

two case studies are presented in Section III, in which traffic 

patterns are identified for two SESAR’s solutions, FR and 

DCB. 

III. CASE STUDIES 

A. Free-Routing 

The SESAR’s Free-Routing solution allows airspace users 

to plan their flight trajectories without reference to fixed routes 

or published directs, optimizing their associated flights 

according to the operator’s business needs or to military 

requirements. This solution aims to improve the fuel efficiency 

of the network, having an impact on all the related Operational 

Efficiency KPIs. 

The variables identified for this SESAR solution were the 

KPIs and traffic features directly affected by it: average flown 

distance per flight, gate-to-gate flight time (GTGT), actual 

average fuel burnt per flight, route charges, average of 

difference between flown trajectories and flight plans 

(predictability), average minutes of en-route ATFM delay per 

flight attributable to air navigation services (ANS), 

meteorological (MET) or non-ANS reasons. These 

performance indicators were computed for the year 2019 (the 

last year before the COVID-19 crisis). 

For the data preprocessing step, all the statistics with 

variance smaller than 0.001 were removed. A correlation 

analysis revealed that the average flown distance per flight, 

GTGT, actual average fuel burnt per flight, and route charges 

variables were highly correlated. Hence, two datasets were 

considered in parallel, one with all the statistics and another one 

in which the correlations higher than 0.98 were removed. Other 

values for this threshold were considered, such as 0.99, 0.93 and 

0.90; the 0.98 value was selected because it provides the best 

trade-off between removing highly correlated features and 

keeping as many relevant variables as possible (i.e., efficiency 

variables for this particular case). Finally, the principal 

component analysis (PCA) technique was applied to both 

datasets. After this procedure, four datasets are generated: the 

dataset with all the statistics with and without PCA, and the 

dataset without the correlated statistics with and without PCA.  

Next, the k-means algorithm was applied to the four datasets 

generated. To get the best number of clusters for each dataset, 

the k-means algorithm was run for different numbers of 

clusters. For each number, the silhouette score and the inertia 

were computed. The number of clusters providing the best 

trade-off between those values was selected.  

Finally, in order to interpret the results, the variables were 

grouped into three groups: 

● Efficiency variables: average flown distance per flight, 

GTGT, actual average fuel burnt per flight, and route 

charges. 

● Predictability variable: average difference between 

flown trajectories and flight plans. 

● Regulation variables: average en-route ATFM delay 

per flight (both for all the flights and only for the 

regulated flights) attributable to ANS, MET, and 

non-ANS regulation causes. 

This methodology was applied at three geographical scales, 

namely ECAC, ANSP, and ACC. The ANSP studied is 

ENAIRE (Spanish ANSP) and the ACC, LECM (Madrid 

ACC). At ANSP level, the variables were computed taking into 

account only domestic flights. At ACC level, only the GTGT, 

the average of difference between flown trajectories and flight 

plans, and the regulation variables were computed, as it was not 

possible to adapt the rest of the variables to this geographical 

scale. In particular, the GTGT and the predictability variables 

were computed considering the entry and exit time (planned and 

actual) to and from the airspace associated to the ACC.  
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B. Demand and Capacity Balancing 

The SESAR’s Demand and Capacity Balancing solution 

aims at evolving the existing DCB process to a powerful 

distributed network management function that takes full 

advantage from the SESAR Layered Collaborative Planning, 

Trajectory Management principles and SWIM technology to 

improve the effectiveness of ATM resource planning and the 

network performance. The needs of the network are considered 

as a whole, together with local factors, to avoid overloads in a 

seamless process. In particular, this solution aims to improve 

the capacity and the efficiency of the network. 

The variables identified for this SESAR solution were the 

KPIs and traffic features directly affected by it. This includes 

all the variables already identified for the FR case study, 

together with the number of instrumental flight rules (IFR) 

movements, the average additional flown distance per flight, 

and the on-time performance (departure delay). These variables 

were also computed for the year 2019.      

Considering all the variables and associated features, a 

feature selection engineering process was applied, including: a) 

data cleaning to remove from the initial dataset all the variables 

with variance equal to zero and normalize all the inputs; b) 

filtering of the highly correlated variables, both directly and 

indirectly; and c) application of a non-supervised 

dimensionality reduction technique known as Feature 

Agglomeration following a hierarchical aggregation algorithm, 

to group all the variables and preserve only the variables with 

the highest variance within each group. 

The selection of the best number of clusters was performed 

in the same way as described in Section III.A. 

This methodology was applied at the same geographical 

scales as the FR case study: ECAC, ANSP and ACC. Also, the 

ANSP and ACC studied are the same as in the FR use case, i.e., 

ENAIRE and LECM ACC, in order to compare the results 

obtained in both case studies. The same considerations 

described in the FR case study for the calculation of indicators 

at ANSP and ACC level apply in this case. 

IV. RESULTS 

C. Free-Routing 

1) Traffic patterns at ECAC level 

The results obtained for the best number of clusters in each 

dataset are shown in Table 1, and the selected combination 

appears in bold. As can be seen, the selected option reaches the 

best silhouette and Davies-Bouldin scores and one of the 

highest Calinski-Harabasz score and corresponds to limit the 

study to 7 different classes and consider all variables.  

TABLE 1 METRICS FOR THE ECAC LEVEL – FR 

Kind data Silhouette 
Davies-

Bouldin 

Calinski-

Harabasz 

Nº 

clusters 

no 

correlation 
0.137 2.052 48.067 6 

no corr. – 

PCA 
0.146 1.867 45.943 7 

with 

correlation 
0.187 1.701 68.893 7 

with corr. 

– PCA 
0.163 1.773 81.403 6 

 

The seven traffic patterns obtained with the described 

clustering analysis are shown in Figure 1.  

To interpret these results, the distribution of the variables 

computed, as well as of the temporal variables, was analyzed. 

With this information, a description of each cluster is provided, 

where the clusters are named after the color code of Figure 1: 

● dark blue cluster: Sundays of the IATA winter season, 

Christmas season (except Saturdays and 24th and 25th 

December), and All Saint’s Day. These days are 

characterized by having medium values of the 

efficiency variables and low values of the predictability 

variable; 

● orange cluster: weekends of the IATA summer season. 

Days with the lowest value of the predictability variable 

and the highest delays due to ANS and MET reasons; 

● red cluster: Saturdays of the IATA winter season, 

Christmas Eve, and Christmas day. Days with the 

fewest flights per day and the worst efficiency values; 

● brown cluster: working days of the second week of 

March. Days with low values of the efficiency variables 

and the highest values of the predictability variable; 

● pink cluster: first working weeks of the IATA summer 

season. Days with low values of the efficiency 

variables and medium values of the predictability 

variable. They also have small delays due to MET 

regulations, but high delays due to non-ANS 

regulations. 

Figure 1 Traffic patterns at ECAC level - FR (7 clusters) 
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● yellow-olive cluster: working weeks of the IATA 

winter season. Days with low values of the efficiency 

variables, medium values of the predictability variable, 

and the smallest delays due to ANS and MET reasons; 

● light blue cluster: working weeks of the summer 

season. Days with very low values of the efficiency 

variables and high values of the predictability variable. 

They also have very small delays due to non-ANS 

regulations. 

2) Traffic patterns at ANSP level 

Table 2 shows the metrics obtained for the best number of 

clusters for each dataset computed. The row in bold is the 

selected combination. This combination has the best values of 

the silhouette and Calinski-Harabasz scores, and the 

second-best value of the Davies-Bouldin score and corresponds 

to considering 6 different clusters and no correlated PCA 

variables. 

TABLE 2 METRICS FOR THE ENAIRE ANSP - FR 

Kind data Silhouette 
Davies-

Bouldin 

Calinski-

Harabasz 

Nº 

clusters 

no 

correlation 
0.104 2.069 31.759 8 

no corr. - 

PCA 
0.120 2.057 37.777 6 

with 

correlation 
0.118 2.088 37.055 6 

with corr. - 

PCA 
0.113 2.000 33.282 8 

 

The six traffic patterns obtained are shown in Figure 2. The 

characterization of the clusters obtained from the analysis 

of the selected variables, where each cluster is named after 

the color code of Figure 2, is the following: 

● dark blue cluster: working days mainly concentrated in 

March, April, July, October, and November. They have 

the highest values of the efficiency variables, medium 

values of the predictability variable, small delays due 

to ANS regulations, and no MET regulations; 

● green cluster: winter working days. These days are 

characterized by having the smallest number of flights, 

medium values of the efficiency variables, high values 

of the predictability variable, and no MET regulations; 

● purple cluster: days equally spread along the year. 

These days have low values of the predictability 

variable, medium values of the efficiency variables, 

and small delays due to MET regulations; 

● pink cluster: mainly Saturdays of the IATA winter 

season, Christmas Day, and Tuesdays of January. 

These days are the ones with the smallest number of 

domestic flights and small number of flights. They have 

the lowest values of the efficiency variables and low 

values of the predictability variable. These days also 

have the biggest delays due to ANS and MET 

regulations; 

● yellow-olive cluster: working days of the IATA 

summer season mostly concentrated in June and July. 

These are days with the biggest number of flights and 

domestic flights, and very high values of the efficiency 

and predictability variables. They also have the 

smallest delays due to ANS regulations; 

● light blue cluster: days equally spread along the year. 

They have the highest values of the predictability and 

route charges variables, and medium values of the rest 

of the efficiency variables. Days with no MET 

regulations. 

3) Traffic patterns at ACC level (LECM ACC) 

As in previous cases, the metrics obtained for the best 

number of clusters for each dataset are shown in Table 3, where 

the row in bold represents the selected combination. The best 

combination corresponds to 6 clusters considering all the 

variables with PCA.  

TABLE 3 METRICS FOR THE LECM ACC - FR 

Kind data Silhouette 
Davies-

Bouldin 

Calinski-

Harabasz 

Nº 

clusters 

no 

correlation 
0.098 1.843 33.829 7 

no corr. - 

PCA 
0.123 1.809 39.519 5 

with 

correlation 
0.108 1.885 37.972 7 

with corr. - 

PCA 
0.130 1.797 42.272 6 

 

The six traffic patterns obtained are shown in Figure 3.  

Figure 2 Traffic patterns for the ENAIRE ANSP – FR (6 clusters) 
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The interpretation of the results by means of the distribution 

within each cluster of the variables computed and the temporal 

ones can be summarized as follows: 

● dark blue cluster: these days have low values of the 

predictability variable and medium values of the GTGT 

variable. Moreover, they have the biggest delays due to 

ANS regulations and medium delays due to MET and 

non-ANS regulations; 

● green cluster: summer and Christmas season. These 

days have the highest values of the GTGT variable and 

high values of the predictability variable. They also 

have big delays due to ANS regulations, small delays 

due to MET regulations, and no non-ANS regulations; 

● pink cluster: non-weekend summer days mainly. These 

days have the biggest number of flights and high values 

of the GTGT and predictability variables. Besides, they 

have the biggest delays due to MET regulations, 

medium delays due to ANS regulations and no non-

ANS regulations; 

● purple cluster: mainly days of the IATA winter season 

concentrated in the last 3 months of the year. Days with 

the smallest number of flights, medium values of the 

GTGT variable, and the highest values of the 

predictability variable. They also have small delays due 

to ANS regulations and no MET regulations; 

● light blue cluster: this cluster only contains 9 days, 

belonging to March, April, and June. All these days 

have ANS and non-ANS regulations but no MET 

regulations, with the highest delays due to non-ANS 

regulations. They also have low values of the GTGT 

variable and medium values of the predictability 

variable; 

● yellow-olive cluster: mainly winter days concentrated 

in the first 5 months of the year. Days with the lowest 

values of the GTGT and predictability variable. They 

also have small delays due to ANS, MET and non-ANS 

regulations. 

D. Demand and Capacity Balancing 

1) Traffic patterns at ECAC level 

The results obtained for the best number of clusters for each 

dataset are shown in Table 4, and the selected combination 

appears in bold. The selected option, i.e., the feature 

agglomeration dataset, reaches the best silhouette, 

Davies-Bouldin and Calinski-Harabasz scores for 4 clusters.  

TABLE 4 METRICS FOR THE ECAC LEVEL - DCB 

Kind data Silhouette 
Davies-

Bouldin 

Calinski-

Harabasz 

Nº 

clusters 

cleaned dataset 0.161 1.777 61.150 5 

–non-
correlated 

dataset 
0.1820 1.694 70.117 4 

feature 

agglomeratio

n dataset 

0.2033 1.531 75.060 4 

 

 The four traffic patterns obtained are shown in Figure 4. 

The interpretation of the results, in terms of the relevant 

variables, lead to the following cluster characterization, 

where the color code of Figure 4 is used to name them: 

● dark blue cluster: weekend periods of the summer 

season. These days are characterized by having a 

number of flights relatively low and a high average 

fuel consumption (long distance flights); 

● red cluster: days of the IATA winter season with the 

highest number of flights; 

Figure 3 Traffic patterns for the LECM ACC – FR (6 clusters) 

Figure 4 Traffic patterns at ECAC level - DCB (4 clusters) 
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● pink cluster: it represents the days with a low level of 

traffic, the lowest average delay per flight and the 

lowest additional flown distance; 

● light blue cluster: summer working days. This cluster 

is characterized by grouping a small number of days 

with the highest number of flights, the highest average 

delay per flights and the highest additional flown 

distance.  

2) Traffic patterns at ANSP level 

In this case, the dataset that provided the best results is the 

feature agglomeration dataset. Table 5 shows the metrics 

obtained for this dataset. 

TABLE 5 METRICS FOR THE ENAIRE ANSP - DCB 

Kind data Silhouette 
Davies-

Bouldin 

Calinski-

Harabasz 

Nº 

clusters 

feature 

agglomeration 

dataset 

0.110 2.035 40.789 7 

 

The seven traffic patterns obtained are shown in Figure 5. 

Next, the characterization of the clusters is presented, where 

each cluster is named after the color code of Figure 5: 

● dark blue cluster: weekly days of the summer season. 

These days are characterized by having a high number 

of flights (both domestic and international). In addition, 

the average fuel consumption is also high (long 

distance flights) as well as the average on-time 

performance and additional flown distance; 

● orange cluster: it contains a mix of weekly and weekend 

days of the summer and weekend season with a 

relatively high number of flights, but with no additional 

relevant characteristics; 

● red cluster: being similar to the blue cluster with 

regards to the number of flights (domestic and 

international) and aggregation of weekly days of the 

summer season, this cluster differs from the latter in 

terms of average fuel consumption and on-time 

performance, presenting significantly lower values for 

these indicators; 

● brown cluster: weekend days of the winter season. 

These days are characterized by having a very low 

number of domestic and international flights; 

● pink cluster: it is similar to red cluster in terms of 

number of flights and on-time performance, but the 

pink cluster presents an average fuel burnt relatively 

higher; 

● yellow-olive cluster: it represents the weekly days of 

the winter season with a low level of flights, in 

particular in terms of international flights; 

● light blue cluster: this cluster, without a clear temporal 

distribution, contains a reduced number of days with 

the highest number of international flights, and 

therefore, it also presents a high average fuel 

consumption. Without presenting a clear temporal 

distribution, this cluster seems to group dates close to 

relevant bank holidays and holidays periods. 

3) Traffic patterns at ACC level (LECM ACC) 

As in previous occasions, the dataset that produces the best 

results is the one with feature agglomeration. Table 6 shows the 

metrics obtained for the best number of clusters for this dataset. 

TABLE 6 METRICS FOR THE LECM ACC - DCB 

Kind data Silhouette 
Davies-

Bouldin 

Calinski-

Harabasz 

Nº 

clusters 

feature 

agglomeration 

dataset 

0.159 1.59 54.30 5 

The five traffic patterns obtained are shown in Figure 6. 

After an interpretation analysis, a description of each of them is 

provided, where, as before, the color code of Figure 6 is used to 

name them: 

● dark blue cluster: this cluster, representing weekly days 

without a clear seasonal distribution, groups days with 

a significantly low number of fights (lower than the 

average); 

● green cluster: this cluster contains weekly days with a 

relatively low number of flights, but with significant 

levels of average delay per flight; 

● grey cluster: it groups summer days with high levels of 

traffic load and high delays; 

● brown cluster: despite being a small cluster, this cluster 

is clearly characterized by grouping summer days with 

Figure 5 Traffic patterns for the ENAIRE - DCB (7 clusters) 
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high levels of traffic and high delays originated by 

meteorological reasons; 

● light blue cluster: it is also a small cluster that contains 

weekend days with a relatively low number of flights. 

Within this cluster, all the days assigned have non-ANS 

related ATFM regulations. 

E. Selection of representative days 

After identifying the traffic patterns for each case study and 

geographical scale, the set of representative days is computed 

by selecting the day with the best and the worst silhouette score 

for each cluster. 

To verify that this selection effectively leads to 

representative traffic samples, we analyze the days selected for 

one particular cluster of the FR case study at ECAC level 

(represented in Figure 1). The analysis for the rest of the days 

is analogous. 

Table 7 shows the traffic sample selected at ECAC level. 

TABLE 7. SELECTION OF TRAFFIC SAMPLE – ECAC - FR 

Cluster 
Day best 

silhouette 

Day worst 

silhouette 

dark blue 2019-11-24 2019-11-01 

orange 2019-09-21 2019-05-26 

red 2019-01-19 2019-04-06 

brown 2019-03-13 2019-02-28 

pink 2019-05-13 2019-04-18 

yellow-

olive 
2019-03-05 2019-04-05 

light blue 2019-08-30 2019-04-12 
 

The cluster analyzed is the orange one. For this cluster, the 

average value and the standard deviation (shown in brackets) of 

the traffic features computed for this use case are shown in 

Table 8 and Table 9.  

TABLE 8. AVERAGE VALUES OF THE EFFICIENCY VARIABLES 

Nº 

flights 

Consumed 

fuel 

Route 

charges 

Flown 

distance 
GTGT 

31372.81 

(2092.33)      
10924.33 

(386.41)  

854.70 

(26.23)      
2099.80 

(60.58)      
173.70 

(4.31)      
 

TABLE 9. AVERAGE VALUES FOR THE PREDICTABILITY AND REGULATION 

VARIABLES 

Predictability 
Delay ANS 

regulation 

Delay MET 

regulation 

Delay non-

ANS 

regulation 

5.38 (0.23)      2.36 (0.79)      0.87 (1.07)      0.14 (0.13)      

The values of those traffic features for the selected 

representative days for this cluster (2019-09-21 and 2019-05-

26) are shown in Table 10 and Table 11. The tables also show 

the values for the representative days of cluster red (2019-01-

19 and 2019-04-06), for comparative purposes. In brackets, we 

show the distance to the mean of the orange cluster in terms of 

the standard deviation of the cluster. Positive values of this 

distance mean that the average value of the cluster is bigger than 

the average value of the day; the distance is negative otherwise.  

TABLE 10. AVERAGE VALUES OF THE EFFICIENCY VARIABLES FOR THE 

REPRESENTATIVE DAYS 

Day Nº flights 
Consumed 

fuel 

Route 

charges 

Flown 

distance 
GTGT 

2019-09-21 30733 

(0.31 std) 
11233.40 

 (-0.80 std) 

879.15 

(-0.93 std) 

2163.01 

(-1.04 std) 

178.01 

(-1.00 std) 

2019-05-26 31115 
(0.12 std) 

10493.30  
(-1.12 std) 

819.12      
(1.36 std) 

2007.88 
(1.52 std) 

167.73 

(1.39 std) 

2019-01-19 21549 

(4.79 std) 

13038.72  

(-5.47 std) 
932.34 

(-2.96 std) 

2296.85  

(-3.25 std) 
188.90 

(-3.53 std) 

2019-04-06 25866 

(2.63 std) 
11867.17 

(-2.44 std) 

876.69 (-

0.84 std) 
2183.85 

(-1.39 std) 

180.16 

(-1.50 std) 
 

TABLE 11. AVERAGE VALUES OF THE PREDICTABILITY AND REGULATION 

VARIABLES FOR THE REPRESENTATIVE DAYS 

Day Pred. 
Delay ANS 

regulation 

Delay MET 

regulation 

Delay non-

ANS reg. 

2019-09-

21 
5.63 

(-1.07 std) 

2.18 

(0.23 std) 

0.80 

(0.06 std) 

0.01 

(1 std) 

2019-05-
26 

5.09 

(1.26 std) 

1.97  
(0.49 std) 

0.14 

(0.68 std) 

0.02 

(0.92 std) 

2019-01-

19 
5.32 

(0.26 std) 

0.60 

(2.22 std) 

0.06 

(0.76 std) 

0.00 

(1.08 std) 

2019-04-

06 
5.32 

(0.26 std) 

1.30 

(1.34 std) 

0.01 

(0.80 std) 

0.04 

(0.77) 
 

All the values of the 21st September 2019 differ less than the 

standard deviation of the average values of the cluster (except 

in the flown distance and predictability variables), and in most 

cases they are pretty close to the mean. This was expected, as 

this day is the most representative day of the cluster. The values 

for the 26th May 2019, despite being further from the mean in 

some cases, are closer than the standard deviation for many of 

the variables. As this day represents the highest deviation of the 

traffic pattern defined by the cluster, it is logical that some 

values lie outside the standard deviation interval. However, this 

deviation is in no case bigger than two times the standard 

deviation of the cluster. 

Figure 6 Traffic patterns for the LECM ACC - DCB (5 clusters) 
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Regarding the representative days of the red cluster 

(2019-01-19 and 2019-04-06), they present clearly higher 

values of the efficiency variables and lower number of flights 

than those in the orange cluster. In fact, they have much bigger 

distance from the cluster mean (several times the standard 

deviation, see Table 11). This cluster was characterized by 

having the highest values of the efficiency variables and the 

smaller number of flights. In contrast, these days have very 

small delays due to ANS and MET reasons compared to the 

days of the orange cluster. The orange cluster was characterized 

by having the highest values of these delays.  

It is interesting to note that the day with the worst silhouette 

score of cluster red (6th April 2019) is the only Saturday of 

April that does not belong to cluster orange. This day represents 

the highest deviation of the red cluster, and one may think that 

it should belong to the orange cluster. However, when 

analyzing its traffic feature values, we see that they fit in the 

pattern of the red cluster and they are different from the pattern 

defined by the orange cluster. Hence, these pairs of days 

represent two different traffic patterns. 

V. CONCLUSIONS 

This paper presents a cluster-based methodology for the 

identification of traffic patterns at different geographical scales 

and the selection of representative traffic samples for the 

assessment of ATM solutions. The methodology proposed is 

applied to the FR and DCB SESAR’s solutions at ECAC, ANSP 

and ACC geographical scales for demonstration and validation. 

Then, a traffic sample for each geographical scale is provided. 

This sample includes, for each traffic pattern found, the most 

representative day and the day with the highest deviation, so 

that a good representation of the traffic pattern is obtained. 

The traffic patterns obtained highly depend on the calendar 

events (week days, seasons, holidays, etc.), specially at ECAC 

level. This is due to the fact that the air traffic services and the 

airlines schedules are influenced by calendar events, and the 

efficiency variables identified reflect these effects.  

The DCB case study considered all the variables at first and 

then reduced them into three datasets: one with the cleaned data, 

one with the non-correlated variables, and finally one with the 

non-correlated variables but with a reduced dimensionality. In 

all the cases, the dataset that provided the best results is the one 

with the dimensionality reduction algorithm applied. Regarding 

the different geographical scales, the results are more dependent 

on the seasons at ECAC and ACC levels.  

The outcomes of each case study highlight the importance 

of conducting a thorough data preparation process tailored to 

the specific case study. For instance, the dataset with the 

correlated variables produced better (FR) or worse (DCB) 

results depending on the case. 

The ECAC geographical scale has produced the most 

interpretable results in both cases. In particular, the regulation 

variables have demonstrated to be informative for this scale. 

However, at smaller scales (ACC) the information they provide 

is scarcer, so these variables are less representative of the 

demand patterns. 

The validation exercises showed that the methodology 

allows the identification of representative traffic demand 

patterns. For instance, the different seasons are identified in 

almost all the cases and, at ECAC level, many international 

holidays (Christmas season, Workers' Day, All Saints’ Day, 

etc.) and weekends are identified in the FR case study. 

Finally, the selection of traffic samples showed that the days 

selected effectively represent the identified traffic patterns and 

that days of different clusters display different traffic behaviour. 

In future work it would be interesting to include in the 

analysis at ANSP level all the flights crossing the ANSP, and 

not only the domestic flights, and analyze the impact that these 

flights have on the traffic patterns obtained.  
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