
Active Learning Metamodelling for R-NEST
Raquel Sánchez-Cauce∗, Christoffer Riis†, Francisco Antunes†, David Mocholı́∗,

Oliva G. Cantú Ros∗, Francisco Câmara Pereira†, Ricardo Herranz∗, Carlos Lima Azevedo†

∗Nommon Solutions and Technologies
Madrid, Spain

raquel.sanchez@nommon.es

†DTU Management
Machine Learning for Smart Mobility
{chrrii,franant,camara,climaz}@dtu.dk

Abstract—The computational cost of realistic air traffic sim-
ulations is a barrier for a comprehensive assessment of new
ATM concepts and solutions, which, in practice, restricts the
simulations to a limited number of scenarios, often insufficient
to obtain conclusive results. So, a goal for a comprehensive
exploration of the simulation space should be finding its most
informative instances. This can be done by means of active
learning metamodelling, which can be used to translate a complex
simulation model into a metamodel, allowing a more efficient
exploration of the simulation input-output space.

This work presents two metamodels developed within the
SESAR ER4 SIMBAD project for one of the state-of-the-art
ATM simulation tools, R-NEST. The metamodels were trained
using the active learning technique through the metamodelling
framework developed by the SESAR ER4 NOSTROMO project.
The training process with this tool is also described in the paper.

Keywords—ATM; active learning; metamodelling; R-NEST;
Gaussian Process

I. INTRODUCTION

In many cases, microsimulation models are usually the
only feasible and reliable way to assess the performance
impact of new ATM concepts and solutions at network-
wide level. However, when embedded with enough detail,
their computational cost is a barrier for a comprehensive
assessment of those solutions, and, in practice, simulations are
necessarily restricted to a limited number of scenarios, often
insufficient to obtain conclusive results. Hence, a goal when
exploring the simulation space should be picking only the most
informative instances. This can be done through active learning
metamodelling.

An integrated approach of active learning and simulation
metamodelling can be used to translate a complex simulation
model into a metamodel, i.e., an analytical input/output func-
tion that iteratively approximates the results of a more complex
function defined by the simulation model itself, improving
computational tractability and interpretability of results by
allowing a more efficient exploration of the simulator’s be-
haviour.

This work presents the metamodels developed by the
SESAR ER4 SIMBAD project for the R-NEST simulation
tool using the active learning metamodelling technique. These
metamodels were trained using the SESAR ER4 NOSTROMO
metamodelling framework, developed through a metamod-
elling Application Programming Interface (API) [1]. This work

is therefore the result of a collaboration between both SESAR
projects.

The metamodels proposed were validated with the Demand
and Capacity Balancing (DCB) SESAR’s solution. The first
metamodel is defined for a fixed day, and the second meta-
model extends the previous one to a complete AIRAC by
combining the metamodelling methodology with the selection
of representative traffic samples methodology defined in [2].
The results obtained show the potential of this combined
metamodelling approach.

II. BACKGROUND

In this section, we briefly review the essential elements
comprising the adopted methodology, namely, active learning,
simulation metamodels, and Gaussian Processes.

A. Active Learning

Artificial intelligence (AI), in the form of statistical and
machine learning models, is often data-hungry because it
requires vast amounts of data to perform well. However, data
can be expensive, mainly if a human must manually provide
the label or if the data comes from a computationally costly
simulator. First, we must be clear that in the literature, a data
set consists of data points, and a data point can refer to both
a labelled data point with an input and output (x, y), and to
an unlabelled data point only consisting of the input x. If the
data point comes from a simulator, the unlabelled data point x
is typically trivial to obtain, but the labelled data point (x, y)
can only be obtained by actually running the simulator for the
input x to get the output y.

Active learning reduces the amount of data needed by
carefully focusing on only spending time on labelling a data
point if it adds essential information to the model [3]. It should
be seen in contrast to labelling a data set in a single go, e.g.,
making a grid with data points to label [4]. The acquisition
function of the active learning can indeed be based on diversity
in the input space, but more often, it is an advantage to look
at the outputs of the model instead. In particular, it has been
found that choosing to label the data point where the model
is very uncertain about the predictions is an efficient strategy
to increase the model’s performance with the smallest amount
of labelled data points [5].

As seen in [6], an arbitrary active learning strategy can
be defined by the quintuple (L,U ,M,O,Q). First, L is the
labelled data set used for training. The set of unlabelled data
points is represented by U . Generally, the number of unlabelled
points is much higher than the labelled ones. Note that U
encompasses the area of exploration within the input space.
M is the machine learning model. Depending on the nature
of the problem being modelled, it can be a classification or
a regression model, which in turn affects the nature of labels
in the set L of being discrete or continuous, respectively. The
oracle is represented by O. In this work, the oracle role will
be played by R-NEST. Finally, Q is the query function that
encodes the strategies and criteria for finding and selecting the
most informative instances from U to be added to L.

B. Simulation Metamodelling

A simulation metamodel [7] is any type of model that
is used to approximate the unknown input-output mapping
inherently defined by the simulation model, essentially serving
as a surrogate or proxy with respect to the associated simulator.
Although simulation models are simplified representations of
the real-world system, they can still be, and often are, complex
and detailed enough to yield significant inconveniences in
practice. The most common shortcoming is their tendency
to exhibit expensive simulation runs. Furthermore, the size
and range of the input variable space can make it difficult to
efficiently study and explore the behaviour of computer simu-
lations as a whole, even with current computing technologies.

Simulation metamodels can then be employed to minimise
the computational drawbacks posed by time-consuming sim-
ulation runs by jointly exploiting their approximate nature,
functional simplicity, and fast computing. Being approxima-
tions of the underlying simulation functions, the metamodels’
design and general performance can achieve balanced trade-
offs between computational speed and controlled accuracy
loss, depending on their ultimate objectives. Another feature
of metamodels is that their respective functional structures
are generally known and analytically defined, as opposed to
those of most simulators. It is worthwhile noting that, although
the average arbitrary simulator is oftentimes comprised of
a plethora of internal analytic expressions and logical rela-
tionships, it can be externally treated as a single ‘black-box’
function with no clear mathematical formula. Nevertheless,
an ‘emergent behaviour’, resulting from its inner interactions
and dynamics that evolve over time can be directly observed.
Metamodels aim at mimicking precisely this output behaviour
as a function of the simulation inputs. Metamodels have
previously been used in the field of transportation, but only
recently within the area of ATM [8].

C. Gaussian Processes

The purpose of a metamodel is to have a fast approximation
of the simulator, but it is equally essential that the underly-
ing model of the metamodel can model complex functions
alongside efficiently using small and medium-sized data sets.
Additionally, active learning will be more efficient if the model

provides some uncertainty measures because that helps the
construction of a metamodel that minimises the uncertainty of
its predictions and thus increases the accuracy of the approx-
imation. For those reasons, the Gaussian Processes (GPs) are
generally the underlying model used to create the metamodels
because they are flexible, work well with relatively small data
sets, and provide uncertainty estimates [5]. In short, a GP is a
kernel method and can be used for regression problems, in a
similar way as linear regression can be used. However, since
the method is less known than linear regression, we will in
the following formally define what a GP is while keeping the
practitioner in mind. For an thorough description of a GP, we
refer the readers to [9]. Due to their modelling flexibility and
Bayesian formalism, GPs are common choices for both active
learning and metamodelling tasks.

At first, to fit a GP - as our metamodel - to approximate
the simulator, we need a data set L, consisting of labelled
simulations. We denote each simulation in the data set as a
data point, which is specified by the d input variables x and the
output of the simulator y (here it is a scalar, but in other cases
it could be a vector). Given that there are N simulations in
the data set, we formally write L = (X,y) = {xi, yi}Ni=1. In
contrast to linear regression, a GP is a non-parametric function,
and thus there are no parameters as such. Instead, a GP is
given by some latent function values f , such that they - added
by a Gaussian noise ε - give the corrupted observation yi =
fi + εi, εi ∈ N (0, σ2

ε). A GP is fully specified by a mean
function m(·) and a kernel k(·, ·). It is common practice to
ignore the mean function and set it equal to zero, such that the
GP is fully specified by the kernel Kθ, which is parameterised
with the hyperparameters θ.

The kernel can take many forms, e.g., linear or polynomial,
but one of the most common choices is the Radial-basis
function (RBF) kernel, which is flexible and smooth. The RBF
kernel is given as kRBF (x,x

′) = σ2
k exp

(
−||x− x′||2/2ℓ2

)
,

where σ2
k is the output variance and ℓ is the length scale.

The intuition is that the output variance models the am-
plitude of the outputs, whereas the length scale is a mea-
sure of correlation between the outputs of nearby inputs.
Often the kernel is defined without Gaussian noise, but
we can add it to the kernel with an indicator variable,
as σ2

εI{x=x′}, such that the hyperparameters of the kernel
are θ = (ℓ, σk, σ

2
ε). We optimise the hyperparameters by

maximizing the marginal likelihood estimate (MLE): θ̂ =
argmaxθ

(
logN (y|0,θ + σ2

εI)
)
. Then the prediction of the

output for a new input X⋆ is given by the predictive posterior
p(f⋆|θ,y, X,X⋆) = N (µ⋆,Σ⋆), where the predicted mean
and covariance are, respectively, µ⋆ = K⋆

θ

(
Kθ + σ2

εI
)−1

y

and Σ⋆ = K⋆⋆
θ − K⋆

θ

(
Kθ + σ2

εI
)−1

K⋆⊤
θ , with K⋆⋆

θ being
the covariance matrix between the test inputs, and K⋆

θ being
the covariance matrix between the training and test inputs.

III. METHODOLOGY

In this section, we give an overview of the metamodelling
methodology developed within NOSTROMO [1] and depicted
in Figure 1. Several requirements should be satisfied before

2

Figure 1. NOSTROMO Methodology

proceeding with this methodology. The first step is to define
the research questions and the case study. From a modelling
perspective, this will lead to the specification of the simulation
input variables x and Key Performance Indicators (KPIs)
or other outputs of interest y and, consequently, the input
domain U of applicability in which we want to explore the
simulator’s behaviour. Additionally, due to the iterative nature
of active learning, an initial training data set L should be
built, essentially comprising a small set of simulation results
generated according to a certain sampling strategy and based
on the set of simulation variables we choose to work with.

The methodology is split into two stages, active learning and
metamodelling, which then unfold into four sequential steps:
(i) training, the metamodel is fitted to the simulation data L;
(ii) prediction, the fitted metamodel is used to predict over the
simulation input domain of applicability U ; (iii) request, based
on some query function Q (e.g. maximum predictive variance),
new unlabelled data points x′ are selected to be run by the
simulator, being the oracle O in this case (remember that these
points are comprised of points for which the corresponding
true output values are unknown); (iv) response, the simulator
provides new simulation outputs y′ corresponding to the points
from the third step, which are then added to the current
training set L. These steps are repeated cyclically until a
stopping criterion is satisfied. This criterion can be defined,
for example, as a function of the metamodel’s performance,
such as accuracy or error reduction, or simply by number of
iterations to be performed with respect to the available time,
budget and resources.

A. NOSTROMO API

Figure 2 depicts the general architecture of the metamod-
elling API developed in the context of NOSTROMO. Mercury
[10] and Flitan (ISA Software), are two simulators used for
the case studies evaluation within the project itself. This work
focuses however on the results obtained from the integra-
tion of R-NEST. The NOSTROMO API assumes a REST
architecture, enabling the creation of interactive applications.
Within this architecture, the user can send data requests and
receive back data from the server via an JSON object. The
user requests are based on the HTTP protocol, which in
turn provides a set of basic operations such as, checking the

Figure 2. NOSTROMO API.

available simulator, specify the applicability domain (search
grid), input variables and KPIs for metamodelling, and submit
a metamodelling request.

Another important point to mention is the potential asyn-
chronous nature of some API requests. Due to the runtimes
of both the metamodel fitting and the simulator execution
itself (due to the sequential active learning queries), the
final metamodelling results are unlikely to be immediately
available after the user request. On the contrary, a reasonable
amount of computational time is indeed between the user’s
request and the effective delivery of the corresponding results.
Therefore, the API will be logging the results directly to
the NOSTROMO repository. The user is then able to check
whether the submitted request has finished and finally obtain
the results by looking into the repository.

In the current version of the API, the Translation Layer
(TL) is implemented within a preliminary stage of the meta-
modelling process, essentially dealing with data preparation.
Some simulators, whose input/output variables are of cate-
gorical (string-based) nature, cannot be directly used by most
machine learning metamodels, only handling numerical or
quantitate data. On top of that, the simulation data might be
scattered across multiple log files and organised according
to a structure not readily compatible with the usual matrix
form. For these reasons, the TL generally encompasses data
collection, conversion, and merging, and it is applied prior
to the metamodelling itself. In the case of R-NEST this step
was deemed unnecessary as the original data structure is
already compatible with the developed infrastructure. For more
details on the NOSTROMO API, as well as on the underlying
methodology, refer to [1].

IV. EXPERIMENTS

This section introduces the ATM simulation tool used, de-
scribes the two metamodels developed for it, and explains how
they are implemented. For more details on the metamodels
definition and implementation, we refer to [11]. Finally, the
technical details of the active learning metamodels are given.

3

A. R-NEST tool

R-NEST (Research NEtwork Strategic Tool) is a simulation
tool developed by EUROCONTROL for research activities
aimed at evaluating advanced ATM concepts. It combines
dynamic Air Traffic Flow and Capacity Management (AT-
FCM) simulation with airspace design and capacity planning
functionalities, while sharing the same basis as NEST, the
Network Manager operational tool for capacity planning. R-
NEST allows the dynamic simulation of network operations
and the prediction of different types of delays, enabling
the assessment at network level of the impact of the local
implementations of new ATM concepts.

R-NEST allows the use of innovative algorithms for:
• airspace design processes, such as the estimation of fuel

consumption or the creation of new elementary sectors;
• capacity management processes, such as the creation of

new configurations that minimise the overload or the
estimation of the workload based on potential conflicts
and crossing durations;

• advanced ATFCM concepts, such as the implementation
of Short Term ATFM measures (STAMs) or the calcula-
tion of ATFCM delays.

B. R-NEST metamodels definition

Two R-NEST metamodels are defined. The first one is a
simpler model aimed at exploring the simulator input-output
space; while the second one is a more complex extension of
the former with additional input variables to cover a broader
time range.

1) First metamodel: The first metamodel proposed esti-
mates the average departure delay (punctuality PUN1 KPI of
the SESAR Performance Framework [12]) of the flights cross-
ing a selected region and the flights per air traffic controller
(ATCo) hour in duty (cost-efficiency CEF2 KPI of the SESAR
Performance Framework) in that region for a fixed day.

The metamodel is tested using the DCB SESAR’s solution.
This solution considers the implementation of the Dynamic
Airspace Configuration (DAC) together with STAM measures.
DAC aims to improve the airspace capacity by allowing
Air Navigation Service Providers (ANSPs) to organise, plan,
and manage airspace configurations with the granularity and
flexibility required to respond to the changes in traffic demand.
While STAM measures seek to smooth ATCO workload by
reducing traffic complexity and peaks, through the short-term
application of minor ground delays, re-routings and flight level
capping to a limited number of flights.

The implementation of DCB in R-NEST is twofold. First,
the improved configuration optimiser (ICO) algorithm is used
to implement DAC in a region. Then, the STAM measures are
implemented through the STAM simulation. This simulation
provides the trajectories of the simulated flights, as well as a
series of performance metrics of them.

ICO is an opening scheme (OS) optimisation algorithm
developed and refined by the EUROCONTROL Experimental
Centre that aims to minimise overload, the number of control
positions used, and the number of configuration changes, in

that order. This algorithm provides, among other performance
metrics, the controller position hours and the overload sum.

The selected input variables of the metamodel are a subset
of the inputs of this algorithm (while the rest are left with
the default values). Specifically, the inputs of the metamodel
are the two minimum opening duration parameters of the ICO
algorithm:

• Configurations: integer for the minimum opening dura-
tion of the configuration in the configuration of the OS.

• Sectors: integer for the minimum opening duration of the
sector in the configuration of the OS.

Once the ICO algorithm is applied, a STAM simulation is
run using the updated OS. This simulation is run with the
default values.

Hence, the first metamodel proposed takes as inputs the
minimum opening duration of both the configuration and
sector in the configuration of the OS and as outputs the PUN1
and CEF2 KPIs, i.e., the datapoints for this metamodel are of
the form

(configurations, sectors; PUN1, CEF2),

where the semi-colon separates the input variables from the
output variables.

2) Extended metamodel: The second R-NEST metamodel
expands the previous one to extend the KPIs prediction for
an entire AIRAC instead of just for a fixed day. For that, the
hourly entry counts of the day in the selected geographical
region are also considered as input variables of the metamodel
to characterise each day. Hence, the input variables of the
previous metamodel are extended with this 24-dimension
vector, while the output variables remain the same, i.e., the
datapoints for this metamodel are of the form

(configurations, sectors, entry counts0, . . . , entry counts23;
PUN1, CEF2),

where the semi-colon separates the input variables from the
output variables and entry countsi denotes the entry counts at
hour i.

C. R-NEST metamodels implementation

1) First metamodel: The spatial scope of the analysis is
focused on the Bordeaux ACC, specifically the lower and east
cluster of the Bordeaux ACC (LFBBCTAE in R-NEST) is
selected, and only the set of flights crossing this region are
considered.

The metamodel is implemented for the day 5th July 2019.
Regarding the input space, both input variables (i.e., config-
urations and sectors) take values from 10 to 300 minutes in
steps of 10 minutes. All the possible combinations of these
variables are considered, with the constraint that the sectors
variable should be greater than or equal to the configurations
variable (as stated in the R-NEST user manual). Additionally,
the combination (0, 0) was also included as input point in
the metamodel to represent the situation where DAC is not
implemented (i.e., the ICO algorithm is not applied and the

4

original OS is used). In total, this metamodel has 466 input
points (i.e., combinations of the input variables).

2) Extended metamodel: As this metamodel is an extension
of the previous one, we keep the same spatial scope (the lower
and east cluster of the Bordeaux ACC). Here, the 7º AIRAC
of 2019 (that includes the days from 20th June to 17th July)
is selected as temporal scope, in order to keep the same time
period as the previous metamodel. The aim of this metamodel
is therefore to estimate both KPIs for every combination of
the OS parameters and every day of that particular AIRAC.

The key part in this metamodel implementation consists in
selecting a big enough set of representative days to train it
with, able to capture all the different behaviours and provide
information about the patterns present in the region. This is
needed because using the 28 days of the AIRAC, with all their
possible OS configurations, would be really inefficient (even
in a AL context). For that, the methodology proposed in [2]
for the selection of representative traffic samples in a year is
applied to the Bordeaux ACC.

After this process, seven clusters were obtained (see Fig. 3,
where each day is coloured by cluster belonging). To select
the traffic samples, the days with the highest silhouette score
of the AIRAC in each cluster were identified. Table I shows
the days selected.

TABLE I. REPRESENTATIVE DAYS FOR EACH CLUSTER

Cluster Cluster id Day

Dark blue 0 10/07/2019
Orange 1 30/06/2019

Red 2 29/06/2019
Brown 3 15/07/2019
Pink 4 20/06/2019

Light blue 6 02/07/2019

Note that the yellow-olive cluster only contains one day
(10th May 2019), which does not belong to the selected
AIRAC, hence, this cluster is not included in the metamodel.

For each day, the same combinations of the ICO parameters
as before are considered, i.e., 466 possible combinations.
Hence, the training space has a total of 2796 points (6×466),
while the complete input space has 13, 048 points (28× 466).

D. Technical details of the active learning metamodels

The active learning metamodels are created by the NOS-
TROMO API using a GP for each output with an RBF kernel
and zero mean function. All inputs X were normalised to the
unit cube, and the outputs y were standardised to have zero
mean and unit variance. The hyperparameters were optimised
with gradient descent based on the MLE. New data points
were queried based on the query function Qvar given by the
maximisation of the mean variance across the outputs [8]. In
practice, only a training data set L is needed to create a meta-
model, but for evaluation it is recommended to have a small
test set Ltest as well. Since we also compare the performance
of the query function Qvar to random sampling Qrand, we
create a small validation set Lval (by removing some points

from L), potentially allowing us to choose between the two
query functions Qvar and Qrand. All results are averaged
across 100 experiments using the same data.

The performance of the metamodel is assessed using the
root mean squared error (RMSE) and mean absolute percent-
age error (MAPE) metrics. For the training process of the first
metamodel, 73 points were used. The training set contains
45 points, the validation set (Lval) contains 13 points, and
the test set (Ltest), 15 points. While a total of 80 points
were used for the training process of the extended metamodel,
65 for training and 15 for validation. Regarding the testing
data, two different test sets were created, one with 13 points
containing only the representative days identified (referred to
as test set with representative days) and another one with 28
points containing different days of the AIRAC (referred to
as test set with external days). This way, we can assess how
the metamodel has learnt for the representative days and its
ability to generalise to the whole AIRAC. This provides an
assessment of the complete methodology used.

In both cases, the AL process ends when all the points of
the training set have been explored.

V. RESULTS

A. First metamodel

Fig. 4 shows the comparison of the RMSE of the predictions
on the validation set of the PUN1 (top) and CEF2 (bottom)
variables per iteration of the AL cycle. Each blue line repre-
sents a repetition of the training process, and the mean and
median are shown in red and yellow, respectively. The column
in the right shows the comparison between the mean RMSE
of both query strategies. As can be seen, the mean RMSE of
the variance sampling is smaller than the one of the random
sampling in every iteration of the AL cycle, showing that the
points selected with this criterion provides more information
to the learning algorithm.

Regarding the two columns on the left, it can be seen that
the variance sampling produces more stable results, as the error
curves of each repetition are more similar among them and the
band that enclose them is narrower. Hence, the model trained
with this query function was finally selected.

Next, the predictive performance of the trained model is
assessed on the test set. Table II shows the mean RMSE and
MAPE of the predictions for each output of the metamodel. As
can be observed, the predictive errors are pretty low, especially
for the CEF2 variable.

TABLE II. PREDICTIVE ERROR OF THE R-NEST METAMODEL

PUN1 CEF2

RMSE 2.45 0.14
MAPE 0.125 0.008

Finally, Fig. 5 compares the actual values of the test set (in
red) with the predictions of the metamodel (in black). The pre-
diction is shown together with its predictive standard deviation
(grey vertical bar). The first column shows the PUN1 values

5

Figure 3. Traffic patterns for the Bordeaux ACC

Figure 4. RMSE of the predictions of the PUN1 (top) and CEF2 (bottom) variables per iteration for the two query functions considered (Qvar and Qrand).
Each repetition is a metamodel with a random subset of the data used for validation. The two plots to the right are the mean performance ± 1 standard
deviation.

with respect to each input variable, while the second column
depicts the CEF2 values with respect to each input variable. As
shown in the figure, the predicted values for the CEF2 variable
are very close to the true ones. Moreover, in most of the cases
the actual values are inside the standard deviation interval of
the predictions, which in turn are small. This implies that the
metamodel is confident about its predictions. Regarding the
PUN1 variable, the predictions are not as accurate, however,
in many cases the actual value also belongs to the predictive
standard deviation interval, which implies that the metamodel
has learnt to model the behaviour of the variable.

B. Extended metamodel

This metamodel was trained following the same process
as the first metamodel. After comparing its performance for
both query functions, the query function Qvar was selected
as it produced more regular and stable results (as already
observed in Section V-A). Once it is trained, its predictive
performance is assessed on the two test sets created. Table
III shows the predictive RMSE and MAPE for each output
variable for the test set with representative days and the test
set with external days. As can be seen, the errors for the PUN1
variable are high in both cases, although they are higher in the
set with representative days. Regarding the CEF2 variable, the
predictions are very accurate in the first case and less accurate
(although still good) in the second case. As one may expect,

PUN1 CEF2

RMSE 5.66 0.24
MAPE 0.306 0.015

(A) REPRESENTATIVE DAYS

PUN1 CEF2

RMSE 3.23 0.61
MAPE 0.247 0.035

(B) EXTERNAL DAYS

TABLE III. PREDICTIVE ERROR FOR THE TEST SET WITH THE REPRESEN-
TATIVE AND EXTERNAL DAYS OF THE EXTENDED R-NEST METAMODEL

the overall predictive results are worse on the test set with
external days, as these are new for the model.

Fig. 6 shows the comparison of the actual values and
the predictions (in black) for the test set with representative
days. The standard deviation of the prediction is also depicted
(grey vertical bar). Each actual point is coloured by cluster
belonging (where the cluster id is the same used in Table
I). As before, each output variable is plotted against each
input variable. The predictive results for the CEF2 variable
are pretty accurate, as already observed in Table III (A), with
most of the actual points inside the standard deviation interval
of their predictions, which in turn are small. This means that
the metamodel provides confident and accurate predictions for
that variable. While the predictions for the PUN1 variable are
worse, although for many points their actual value belongs to
the predictive standard deviation interval as well.

Fig. 7 shows the same information for the test set with the
external days. Note that for this dataset, only four clusters

6

Figure 5. Predictive performance of the R-NEST metamodel on the test set.

Figure 6. Predictive performance of the extended R-NEST metamodel on the test set with the representative days.

are considered, as clusters 1 and 3 only contain one day
in the 7º AIRAC, which were used for training. In this
case, the predictive standard deviation intervals are much
larger, implying a greater uncertainty in the predictions of
the metamodel. Moreover, the actual value of very few points
lies in this interval. This suggests that the metamodel is not
able to accurately generalise to other days of the AIRAC.
Nevertheless, it manages to model the behaviour and inertia
of the variables.

VI. DISCUSSION AND CONCLUSIONS

This paper shows the metamodels defined in the SESAR
ER4 SIMBAD project for the R-NEST tool and the NOS-
TROMO active learning metamodelling framework used to
train them.

Two metamodels were defined and the results obtained
show the potential of the methodology presented. The first
metamodel was defined for one single day, 5th July 2019,
and was trained with 45 points. Its predictive performance
is very accurate, with a mean predictive error under 1% for

7

Figure 7. Predictive performance of the extended R-NEST metamodel on the test set with the external days.

the CEF2 variable and under 13% for the PUN1 variable. In
order to extended this metamodel to the rest of the days of
the 7º AIRAC, an extended metamodel was defined including
as input variable the 24-dim vector of the hourly entry counts
of the day in the Bordeaux ACC. To find the days to train
this model with, the methodology for the identification of
representative traffic patterns and traffic samples described
in [2] was followed. This procedure led to six representative
days, which were used to train the metamodel. The predictive
performance of this metamodel is evaluated on two different
test sets, one containing the same days used to train it
and another one containing different days of the AIRAC.
The former test set allows the assessment of the ability to
generalise of the model, while the later, the assessment of the
combined approach followed.

The predictive results for the test set with representative
days are very good for the CEF2 variable (predictive error
under 2%), for which most of the true values are inside the
standard deviation interval of the prediction. The results for
the PUN1 variable are worse (predictive error of around 30%).

Regarding the test set with external days, the results are
worse in general. Even though the predictive error for the
PUN1 variable is smaller than for the test set with represen-
tative days, it is still high (around 25%). Nevertheless, results
for the CEF2 variable, despite being worse (3.5% of predictive
error), are still good. The fact that the predictive results for the
PUN1 variable are worse for both metamodels may be due to
the high variability of this variable, which may require more
training points to fully capture its behaviour.

In the extended metamodel case, for both variables the
actual values of most of the points lie outside the standard
deviation interval of the prediction, which in turn are large in

many cases. This implies that the metamodel is not able to
properly generalise to other days with the provided training
set. At this point, it is important to highlight that the training
and validation sets contain 80 points, while the complete
input space of the metamodel consists in 13, 048 points. So,
these datasets may not contain enough information for the
metamodel to extract the global structure of the complete
input-output space. Nevertheless, the results obtained show the
potential of this approach as, from only 80 points correspond-
ing to the six representative days found, it is able to get the
inertia for the rest of the days of the AIRAC.

As future work, the performance of the extended R-NEST
metamodel should be improved, to refine and further demon-
strate the presented metamodelling approach. For that, we
propose two possible solutions. In first place, the training
set should be enlarged with more points. In addition to that,
more representative days should be included in the training set,
considering for that the days of the AIRAC with the lowest
silhouette score per cluster (as suggested in [2]). This way,
the model would be trained with a more complete sample of
the behaviour and patterns of the ACC, which should lead to
a better performance.

ACKNOWLEDGMENT

This work was supported by the SIMBAD and NOS-
TROMO projects, both funded by SESAR Joint Undertaking
through the European Union’s Horizon 2020 research and
innovation programme under grant agreements Nos 894241
and 892517, respectively. The Eurocontrol R-NEST team is
also greatly acknowledged for their support and guidance.

8

AUTHORS CONTRIBUTION

The authors confirm contribution to the paper as follows:
study conception and design: R. Sánchez-Cauce, C. Riis,
F. Antunes, D. Mocholı́, R. Herranz and O.G. Cantú Ros;
data collection: R. Sánchez-Cauce and C. Riis; analysis and
interpretation of results: all; draft manuscript preparation: R.
Sánchez-Cauce, C. Riis and F. Antunes. All authors reviewed
the results and approved the final version of the manuscript.

REFERENCES

[1] NOSTROMO Consortium, D3.4: Final Metamodelling Methodology.
NOSTROMO Project, Deliverable D3.4, WP3, 2020.

[2] SIMBAD Consortium, D4.1: Methodologies and Algorithms for the Se-
lection of Representative Traffic Samples. SIMBAD Project, Deliverable
D4.1 Version 01.00.00, October 2022.

[3] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009.

[4] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis
of Computer Experiments. Springer, 2019.

[5] R. B. Gramacy, Surrogates. Chapman and Hall/CRC, mar 2020.
[6] X. Wang and J. Zhai, Learning With Uncertainty. CRC Press, 2016.
[7] L. W. Friedman, The simulation metamodel. Springer Science &

Business Media, 2012.
[8] C. Riis, F. Antunes, G. Gurtner, F. C. Pereira, L. Delgado, and C. M. L.

Azevedo, “Active learning metamodels for atm simulation modeling,”
Proceedings of the 11th SESAR Innovation Days, 2021.

[9] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[10] L. Delgado, G. Gurtner, P. Mazzarisi, S. Zaoli, D. Valput, A. Cook,
and F. Lillo, “Network-wide assessment of atm mechanisms using an
agent-based model,” Journal of Air Transport Management, vol. 95, p.
102108, 2021.

[11] SIMBAD Consortium, D5.1: Active Learning Metamodelling. SIMBAD
Project, Deliverable D5.1 Version 01.00.00, September 2022.

[12] PJ19.04 Consortium, PJ19.04: Performance Framework (2019).
PJ19.04 Project, Deliverable D4.7 Version 01.00.01, November 2019.

9

	Introduction
	Background
	Active Learning
	Simulation Metamodelling
	Gaussian Processes

	Methodology
	NOSTROMO API

	Experiments
	R-NEST tool
	R-NEST metamodels definition
	First metamodel
	Extended metamodel

	R-NEST metamodels implementation
	First metamodel
	Extended metamodel

	Technical details of the active learning metamodels

	Results
	First metamodel
	Extended metamodel

	Discussion and Conclusions
	References

