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Abstract— This paper presents a data-driven methodology for the 
estimation of flights’ hidden parameters, combining mechanistic 
and AI/ML models. In the context of this methodology the paper 
studies several AI/ML methods and reports on evaluation results 
for estimating hidden parameters, in terms of mean absolute 
error. In addition to the estimation of hidden parameters 
themselves, this paper examines how these estimations affect the 
prediction of KPIs regarding the efficiency of flights using a 
mechanistic model. Results show the accuracy of the proposed 
methods and the benefits of the proposed methodology. Indeed, the 
results show significant advances of data-driven methods to 
estimate hidden parameters towards predicting KPIs. 
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I. INTRODUCTION

The development of performance modelling methodologies 
able to grasp the interdependencies between different Key 
Performance Areas (KPAs) and translate new ATM concepts 
and technologies into their impact on high-level, system-wide 
Key Performance Indicators (KPIs) has been a long-time 
objective of the ATM research community. Generally speaking, 
the modelling approaches to this problem can be classified into 
two main categories: macroscopic and microscopic. 
Macroscopic models represent the behaviour of a system by 
formulating the relationships between aggregated variables 
without explicitly modelling the individual system components. 
On the contrary, microscopic models adopt an explicit 
representation of the actions and interactions of the individual 
elements that compose a system with the aim to observe the 
performance that emerges at the macroscopic level. Several 
SESAR ER projects, such as APACHE1, Vista2 and EvoATM3, 
have employed different types of microscopic models (e.g., 
agent-based models) to understand the influence of new ATM 
concepts and solutions on the performance of the system as a 
whole, showing the ability of these models to capture a rich 
variety of behaviours in a very realistic manner. However, the 
practical application of complex simulation models to strategic 
ATM performance assessment and decision-making is hindered 
by several factors. One of the most important is hidden 
parameters: even if they could, in principle, be measured, certain 
aspects of the ATM system may not be observable for practical 
reasons. This is the case, for example, of business sensitive data 
related to the behaviour of airspace users (AUs) that are of 
paramount importance for the construction of microsimulation 

1 www.sesarju.eu/projects/apache 
2 https://www.sesarju.eu/projects/vista 

models, such as aircraft take-off weight (TOW), selected cost 
index (CI), payload mass (PL), etc. 

In the last decade, with the rising interest in artificial 
intelligence, transport and traffic modelers have begun to apply 
a variety of machine learning techniques for hidden parameter 
estimation that are proving successful in improving the 
capabilities of microsimulation models ([1], [2], [3]). However, 
the exploration of these techniques in the field of ATM is only 
very recent. A common approach in many simulation exercises 
is to set these parameters based on some typical values 
recommended in the literature, due to the difficulties to conduct 
a rigorous and systematic calibration on these unknown 
parameters ([4], [5]). However, these parameters can differ 
significantly across AUs. The question, as in any calibration 
exercise, is essentially how to explore the parameter space of 
each AU model in order to find the combination of parameter 
values that better matches the observed trajectory choices of that 
AU. The problem is therefore similar to that of efficiently 
exploring the model input-output space, with the difference that, 
in this case, the goal is not to optimize a certain performance 
function or find combinations of inputs leading to a particular 
outcome, but to minimize the difference between the simulated 
trajectories and the trajectories observed in historical data. This 
problem has been addressed in SIMBAD [16] building on recent 
work ([6]; [7]) and reported in this article.  

The main objective of this research is to explore the use of 
machine learning techniques for the estimation of flights’ hidden 
parameters from historical data. Specifically, this paper presents 
a data-driven methodology for the estimation of flights’ hidden 
parameters, combining mechanistic and AI/ML models. While 
mechanistic models produce optimal trajectories with respect to 
specific hidden parameters values, data-driven methods are 
trained to predict the target hidden parameters’ values, given the 
trajectories. In the context of this methodology the paper 
proposes and evaluates several AI/ML methods to estimate 
payload mass (PL) and cost index (CI), and reports on evaluation 
results in terms of mean absolute error (MAE). In addition to the 
estimation of hidden parameters themselves, this paper 
examines how these estimations affect the prediction of KPIs 
regarding the efficiency of flights: fuel consumption, gate-to-
gate time and distance flown. Results show the accuracy of the 
proposed methods and the benefits of the proposed 
methodology. 

3 www.sesarju.eu/projects/evoATM 



The contributions that this paper makes are the following: 

- First, it provides a specific methodology for the data-driven
estimation of hidden parameters, using mechanistic models
for the provision of training examples.

- Second, a set of AI/ML methods are tuned and evaluated for
the estimation of hidden parameters, providing a set of
comprehensive, comparative results.

- Third, data-driven AI/ML models are evaluated in the
context of the overall methodology, where specific flights’
KPIs are predicted. This shows how the (in-)accuracy of
estimations affects the prediction of specific KPIs.

The structure of this paper is as follows: Section II presents
the overall methodology to train the AI/ML models for the 
estimation of hidden parameters and the prediction of KPIs. 
Section III formulates the data-driven estimation of hidden 
parameters as a regression problem, and describes the datasets 
exploited for training/testing the AI/ML models. Section IV 
describes the AI/ML methods used for the estimation of hidden 
parameters and section V presents the results of these methods. 
Additionally, Section V shows how hidden parameters 
estimated by the best AI/ML method affect the prediction of 
specific KPIs. Section VII concludes the paper with final 
remarks and future work. 

II. METHODOLOGY

Fig. 1 specifies the overall methodology for the estimation 
of hidden parameters and prediction of flights’ KPIs. It specifies 
the pipelines with components for the provision of 
training/testing data, AI/ML methods, as well as components for 
the prediction of KPIs.  

Figure 1.  Overall data-driven methodology for estimation of hidden 
parameters (training and evaluation) 

Specifically, Fig. 1 shows two pipelines: One for the training 
of AI/ML models (top) and one (bottom) for using the models 
for estimating hidden parameters. The later concludes with the 
prediction of KPIs. These pipelines comprise the DYNAMO 
component in optimization and prediction modes.  

DYNAMO [8] is an aircraft trajectory prediction and 
optimization engine capable to rapidly compute trajectories 
using realistic and accurate weather, and aircraft performance 
data. DYNAMO is based on an aircraft point-mass model (3 
degrees of freedom) and its design enables it to be used on real-
time applications and/or when a large set of trajectories needs to 
be rapidly generated for simulation or benchmarking purposes. 
Moreover, DYNAMO is highly flexible and configurable and 

allows the user to specify a great variety of constraints and 
objective functions.  

In the context of the proposed methodology, DYNAMO is 
used in order to (a) create training/testing datasets to 
train/evaluate the AI/ML models as shown in the first (upper) 
pipeline, and (b) predict flights’ KPIs in a mechanistic way, as 
shown the second (lower) pipeline.  

Operating in optimization mode, DYNAMOoptimization 
provides flight plans that are enriched with some variables 
(specified subsequently), in conjunction to the values of the 
hidden parameters CI and PL, per trajectory. These trajectories 
and target values are used for training the AI/ML models.  

Flight plans provided by DYNAMOoptimization are called 
DYNAMO_FP trajectories. The input variables for 
DYNAMOoptimization are the following ones: 

• Weather data: GRIB file (wind, pressure, temperature).

• CI.

• Take-off mass or landing mass or PL.

• Aircraft type.

• Airspace structure (free route areas, entry/exit points,
airways in non-free route airways...).

• Initial trajectory (if the lateral route has to be fixed
totally or partially).

• Route charges (if flying in Europe).

• Origin – destination (OD) pair.

The second pipeline takes as input a trajectory (flight plan)
and uses the well-trained AI/ML model to estimate the hidden 
parameters’ values. This time DYNAMO operates in prediction 
mode (DYNAMOprediction), to estimate for the given trajectory 
the target KPIs, given the estimated hidden parameters. 

The datasets exploited from these pipelines are: 

• Weather Conditions data.

• Flight plans.

• Simulated flight data.

The first dataset provides weather conditions on a predefined
spatial grid of fixed positions and time intervals. The data have 
been retrieved from the Copernicus Climate Change Service 
(C3S) at ECMWF, covering 28 days in the period from January 
2018 to December 2018. This data source provides hourly 
estimates of a large number of atmospheric, land and oceanic 
climate variables. The data cover the Earth on a 30km grid and 
resolve the atmosphere using 137 levels from the surface up to a 
height of 80km.  

For the second dataset (flight plans), EUROCONTROL 
provides to operational stakeholders an accurate picture of past 
and future air traffic demand over the European continent via the 
Demand Data Repository (DDR2). The flight plans in this 
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dataset are provided in the ALLFT+ format (version 4). Each 
record in an ALLFT+ file reports the flight plan of a single flight 
in 181 columns. Each flight plan comprises at most three 
profiles: a) Filed Tactical Flight Model (FTFM or M1), b) 
Regulated Tactical Flight Model (RTFM or M2), and c) Current 
Tactical Flight Model (CTFM or M3). We use only the M1 flight 
plans. These are depicted in Fig. 2. 

Figure 2.  The M1 trajectories in the data set of flight plans 

Finally, the third dataset includes DYNAMO_FP, i.e., 
DYNAMOoptimization simulated trajectories of flights for the 250 
possible combinations of 50 CI values (ranging from 0 to 100, 
with discretization interval 2) and 5 PL values (ranging from 0.6 
to 1, with discretization interval 0.1). This dataset comprises 
50250 files, i.e., one file for each simulated trajectory for a given 
combination of CI and PL values.  

The DYNAMO_FP dataset reports 201 distinct flights, 
which connect Charles de Gaulle (LFPG) and Istanbul Ataturk 
airports (LTBA), corresponding to ALLFT+ M1 flight plans 
shown in Fig. 2, operated in any of the 28 days for which weather 
conditions are available, with various aircraft types.  

As provided by DYNAMO, each record reports the position 
of the aircraft for a specific time (UTC), its altitude (both 
geometric and pressure altitudes), vertical and horizontal speed 
and throttle, the computed phase of the trajectory, as well as 
weather conditions for the given altitude, position and time.  

Since some of the variables enriching DYNAMO_FP 
trajectories are not provided for real-world flight plans, the pre-
processing task enriches trajectories with variables that can be 
computed from real-world M1 flight plans. This is done for all 
DYNAMO_FP trajectories and for each combination of CI and 
PL values provided in this dataset, ignoring all - except 3D 
positional - variables per trajectory point provided by 
DYNAMO. The detailed variables for this dataset are specified 
in Section III. 

Data pre-processing involves mainly three major tasks. 
Firstly, weather conditions reported in the first data enrich the 
trajectory points (positions) regarding trajectories provided in 
the second (ALLFT+ flight plans) and trajectories provided in 
the third (DYNAMO_FP simulated flight data) data set. Finally, 
the pre-processing task is completed (a) by a rough estimation 
of the flight phases, according to aircraft positional data, and (b) 
the computation of features that are exploited for the estimation 
of hidden parameters. 

The estimation of flight phases is a crucial pre-processing 
task applied to all trajectories. The phases of a flight are reduced 
to those in the set {climbing below FL100, climbing above 
FL100, cruising, descending above FL100, descending below 
FL100}, but we exclude phases below FL100. The recognition 
of flight phases is done by means of the intention of the 
movement of the aircraft. For example, the phase 
“climbing_above_FL100” for each flight, indicates the intention 
of the aircraft for climbing, while “cruising” phase indicates the 
intention of preserving its current flight level:  Indicative results 
for estimating the phases of flights are provided in Fig. 3. 

Therefore, the simulated flight plans in the DYNAMO_FP 
dataset results into two distinct datasets which are distinguished 
by the set of variables per trajectory point: one with trajectory 
variables provided by DYNAMOoptimization, and the other with 
trajectory variables provided by the pre-processing method. 
Both datasets are being used for training/testing the AI/ML 
models, although the later one is the one closer to reality. The 
next section specifies the features exploited per dataset for the 
estimation of hidden parameters. 

III. PROBLEM FORMULATION

The goal is the estimation of the hidden parameters, CI and 
PL, given a flight plan and trajectory variables (in our case, 
either provided by DYNAMOoptimization, or provided by the pre-
processing module). This can be casted as a regression problem 
that targets the prediction of a vector of parameters Y, given a 
vector of input variables X. 

In other words, the aim is to approximate a function f, such 
that  

Y=f(X)+e, 

where e constitutes a noise term or represents imperfections on 
data.  

In our case, the vector Y is a two-dimensional output variable 
that corresponds to two hidden parameters, while X is a feature 
vector that is derived from the variables that enrich either 
DYNAMO_FP trajectories with X comprising 69 features 
(denoted as DYNAMO_FP(69)), or with 51 features derived 
from trajectory variables estimated by the pre-processing 
module (denoted as DYNAMO_FP(51)).  

The variables exploited and the input features for each case 
are described next. 

A. Features for DYNAMO_FP(69)
Εach DYNAMO_FP simulated trajectory is split into phases

(provided by DYNAMOoptimization) and, for each phase, the 
following features (independent variables) are considered: The 
median and the interquartile range (IQR, Q3 – Q1) per flight 
phase, for each one of the 11 variables presented in Table I 
(resulting into 22 features per flight phase, i.e., 66 features per 
trajectory), and 3 additional features for the duration of each 
flight phase.  This results into (11 variables X 2 (median,IQR)) 
X 3 (phases) + 3 = 69 input features and a dependent output 
vector of 2 values: CI and PL.  
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 (a)

(b) 

(c) 

(d)
Notation: 

Figure 3.  The phases for two indicative flights as provided by DYNAMO 
((a) in a higher resolution and (c) according to the  phases targeted) and as 

computed by the pre-processing method ((b) and (d)). The case shown in (b) is 
a good estimation compared to what DYNAMO specifies, but the case shown 

in (d) shows an incorrect estimation of flight phases compared to what is 
specified by DYNAMO, as shown in (c). 

TABLE I. TRAJECTORY VARIABLES FROM DYNAMOOPTIMIZATION 

Variable Description 

h[ft] geometric altitude 

Temp[oC] air temperature 

Press[hPa] air pressure 

Wn[kt] North wind component 

We[kt] East wind component 

Ws[kt] Along path wind 
component 

Wx[kt] Cross-wind component 

Lat[o] Latitude 

Lon[o] Longitude 

vdot Derivative of True 
Airspeed 

hdot Derivative of geometric 
altitude 

B. Features for DYNAMO_FP(51)
Εach trajectory is split into phases estimated by the pre-

processing module, exploiting only spatio-temporal information 
of trajectories, and, for each phase, the following features are 
considered. 

The median and the IQR per phase of each one of the 9 
variables presented in Table II (resulting into 18 features per 
flight phase, i.e., 54 features per trajectory), and the duration of 
each flight phase, which results into 3 additional features. 

TABLE II. TRAJECTORY VARIABLES PROVIDED BY THE PRE-PROCESSING 
METHOD 

Variables Description 

h[ft] geometric altitude 

Temp[oC] air temperature 

v-Wn[kt] v wind component 

u-We[kt] u wind component

Lat[o] Latitude 

Lon[o] Longitude 

vdot Derivative of speed 

hdot Derivative of geometric 
altitude 

IV. AI/ML METHODS

This section provides a brief description of the methods 
evaluated to estimate the CI and the PL.  
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Lasso Regression: This is a type of linear sparse regression 
model that is based on a sparseness procedure over the linear 
weights of model parameters, well-suited for models showing 
high levels of multicollinearity [9].  

Neural Networks: An artificial neural network (NN) is a 
universal approximator that has the ability to learn complex non-
linear relationships among data [10]. The learning process 
establishes an optimisation strategy using an appropriate 
optimisation algorithm and a loss function, which is trying to 
minimise. Here, the Adam optimiser [11] and the mean absolute 
error (MAE) loss function [12] are used. 

Support Vector Regression: The use of support vector 
machines (defining a hyperplane, and fitting as many instances 
as is feasible within this hyperplane while at the same time 
limiting margin violations) for regression problems is known as 
support vector regression (SVR) [13]. SVR also uses the kernel 
trick by introducing an appropriate kernel function (e.g. radial 
basis function (RBF or sigmoidal kernel) that acts like a function 
approximator [10].  

Kernel Ridge Regression: This method (KRR) [14] 
combines ridge regression (linear least squares with L2-norm 
regularization) with the kernel trick. It thus learns a function in 
the space induced by the respective kernel and the data. For non-
linear kernels, this corresponds to a non-linear function in the 
original space.  

Gradient-Boosting trees: This is a machine learning 
technique for optimising the predictive value of a model through 
successive steps in the learning process. Typically, a decision 
tree is used as the basic weak ML model. The gradient boosting 
method (GBM) works in a stage-wise manner, iteratively adding 
a tree model that focuses on correcting the mistakes from the 
previous models. In contrast, other ensemble methods train the 
models in isolation and this might simply lead to each model 
making the same mistakes. 

V. EXPERIMENTS

A. Experimental setting

Every flight plan comprises approx. 600 points, and every
such point is enriched with the trajectory variables shown in 
Table I for DYNAMO_FP(69) and in Table II for 
DYNAMO_FP(51). These variables are used for the calculation 
of the corresponding features, as specified in Section III.  

The two trajectory datasets have been split into training and 
testing subsets. Given 68 ALLFT+ M1 trajectories chosen for 
the purposes of validating trajectory modelling methods (not 
described in this paper), and given all possible combinations of 
CI and PL values for these flights, there are approx. 15700 
DYNAMO_FP trajectories that have been used to test the hidden 
parameters estimation methods. 

The experimental study follows a 10-fold cross validation 
strategy from which the best hyperparameters for all the 
different models are obtained, while the loss function considered 
is MAE. Models for DYNAMO_FP(69) and DYNAMO_FP(51) 
data sets have been tuned separately, given that these have 

different trajectory variables. This also serves the purpose of 
computing the difference between estimated parameters using 
(a) enriched flight plans, with all the variables provided by
optimization methods, against (b) real-world flight plans whose
variables are approximated by pre-processing methods.

The input features were scaled to the [0,1] interval, while the 
estimated hidden parameters are left unscaled. Experiments 
showed that scaling CI and PL made no difference in estimating 
the hidden parameters, while scaling the input was mandatory 
for almost all methods. Finally, the models’ estimations were 
rounded to the closest integer for CI and to the 1st decimal 
position for PL. 

The control variables’ values per method are specified in 
Table III and Table IV, for DYNAMO_FP(69) and for 
DYNAMO_FP(51), respectively. Parameters of the machine 
learning methods for the DYNAMO(69) dataset 

B. Experimental results for DYNAMO(69)
The experimental results of all methods in the test set of

DYNAMO_FP(69) trajectories are presented in Table V. In 
particular, this table shows the performance of the five methods 
in terms of MAE in all DYNAMO_FP test trajectories. These 
errors are calculated after executing 1 run of the best model per 
method in the test subset of DYNAMO_FP trajectories. 

Specifically, results report the following quantities: 

- the MAE mean value (mean),

- the MAE standard deviation (std),

- the interquartile MAE range IQR = Q3 – Q1,

- the MAE range (max – min).

TABLE III. ARAMETERS OF THE MACHINE LEARNING METHODS FOR THE 
DYNAMO(69) DATASET 

Method Settings 
LASSO λ = 10!" 

NN Number of hidden layers = 2 
Number of neurons = 100 and 50 respectively 

Learning rate = 10!# 
Weight Decay = 0 
Epoch s= 50.000 

Activation function = linear 
SVR Kernel function = RBF 

C = 0.25 
ϵ =	10!$ 

tolerance = 10!% 
KRR Kernel function = RBF 

 α = 10!$ 
gamma (Parameter for the RBF kernel) = 

2	 × 10!$ 
GBM n_estimators = 1000 

min_samples_leaf = 15 
min_samples_split = 10 

max_depth = 8 
learning_rate = 10!& 
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TABLE IV. PARAMETERS OF THE MACHINE LEARNING METHODS FOR THE 
DYNAMO(51) DATASET 

The results are also shown in Fig. 4 using boxplots. This 
figure shows the MAE values (y-axis) for the CI variable (left) 
and PL variable (right) with each AI/ML method used, as 
indicated in the x-axis. 

TABLE V. PERFORMANCE OF ALL REGRESSION METHODS IN 
DYNAMO_FP(69) 

C. Experimental results for DYNAMO(51)
The experimental results of all methods using the model and

the test set of DYNAMO_FP(51) trajectories are presented in 
Table VI. In particular, this table shows the performance of the 
five methods in terms of MAE per hidden parameter. These 
errors are calculated after executing 1 run of the best model in 
the test subset of DYNAMO_FP(51) trajectories. Table VI 
reports on the same quantities reported for the DYNAMO(69) 
dataset. 

The same results are also shown in Fig. 5 using boxplots. 
Similar to Fig. 4, this figure shows the MAE values for the CI 

hidden variable (left) and the PL hidden variable (right) obtained 
with each AI/ML method tested. 

Figure 4.   Boxplots of results for DYNAMO(69). The Y axis corresponds to 
the MAE of hidden parameters estimation (left: CI, right: PL) and the X axis 

indicates the ML method used 

According to the results, the best mean performance for CI 
is obtained using the GBM method. However, GBM in this case 
reports a large range of values for CI compared to NN, with the 
same std. Additionally, GBM reports a smaller range of values 
compared to SVR which is the 2nd best method. Considering PL, 
the best method is KRR with a slight difference from GBM.  

TABLE VI. PERFORMANCE OF ALL REGRESSION METHODS IN 
DYNAMO_FP(51) 

Figure 5.  Boxplots of results for DYNAMO(51). The Y axis corresponds to 
the MAE of hidden parameters estimation (left: CI, right: PL) and the X axis 
indicates the ML method used 

Thus, the GBM method has significantly better results for CI 
compared to the other methods, and slightly worse than KRR for 
PL. KRR is the third best model for estimating CI. Therefore, 
GBM provides the best balance in estimating both hidden 
parameters compared to the other methods, achieving a MAE 
below 4% for CI and approx. 2% for PL. 

Overall, from the results obtained with all the hidden 
parameters estimation methods used, we can conclude that GBM 
achieves the best balance for estimating CI and PL in all cases, 

Method Settings 
LASSO λ = 10!' 

NN Number of hidden layers = 2 
Number of neurons = 100 and 100 respectively 

Learning rate = 10!# 
Weight Decay = 10!" 

Epochs = 50.000 
Activation function = linear 

SVR Kernel function = RBF 
C = 1 

ϵ = 10!% 
tolerance = 10!% 

KRR Kernel function = RBF 
  α = 5 × 10!% 

gamma (Parameter for the RBF kernel) = 10!$ 
GBM n_estimators = 1000 

min_samples_leaf = 10 
min_samples_split = 15 

max_depth = 8 
learning_rate = 10!& 

Method CI MAE PL MAE 

mean std IQR range 

(max - 
min) 

mean std IQR range 

(max - 
min) 

GBM 2.91 3.59 4 28 0.009 0.032 ~0 0.3 

NN 3.89 3.89 5 30 0.016 0.044 ~0 0.3 

KRR 4.06 4.322 5 42 0.026 0.048 ~0 0.2 

SVR 3.94 3.97 5 34 0.021 0.049 ~0 0.3 

LASSO 6.032 5.04 7 46 0.039 0.055 0.01 0.3 

Method CI MAE PL MAE 

mean std IQR range 

(max - 
min) 

mean std IQR range 

(max - 
min) 

GBM 3.65 4.2 4 37 0.022 0.046 ~0 0.3 

NN 4.38 4.21 5 34 0.023 0.046 0 0.3 

KRR 4.05 3.86 5 44 0.021 0.046 0 0.3 

SVR 3.98 4.21 5 41 0.03 0.052 0.1 0.4 

LASSO 8.06 6.49 9 88 0.078 0.068 0.1 0.3 
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with a small std (thus, exhibiting robustness and stability) and a 
small estimation error. This concludes that GBM is the best 
among all methods and the mean absolute error reported is (a) 
for CI less than two times the discretization interval of the CI 
values provided in the training data (actually, 1.8 of the 
discretization interval, which is equal to 2), or, less than 4% (i.e., 
4 units in [0,100]), and (b) for PL is much less than the 
discretization interval (equal to 0.1) of the values provided in the 
training data, or, less than 2% (i.e., 0.02 units in [0,1]).   

Also, the results show that all methods show consistent 
behavior when trained and tested using the features provided by 
DYNAMO, and when trained and tested in approximations 
provided by the pre-processing methods. This is exactly the case 
for GBM, which performs consistently well in both cases, and 
for both hidden parameters, compared to the other methods 
evaluated. This shows that GBM can be used for the estimation 
of hidden parameters for real-world flight plans whose variables 
are provided by pre-processing methods. 

D. The effect of hidden parameters’ estimation on the
prediction of KPIs
This part reports on how the estimations of hidden

parameters provided by the best model trained (i.e., GBM), for 
M1 trajectories, support the prediction of flights’ KPIs using 
standard prediction error metrics (such as MAE).  The KPIs are: 
fuel consumption, flown distance, and gate-to-gate time. Here 
we provide results for the DYNAMO_FP(51) flight plans with 
the known hidden parameters’ values and with the estimated 
ones. As the true values of the hidden parameters are known in 
this case, the aim is to study how the difference between known 
and estimated values of the hidden parameters is reflected in 
differences between predicted and actual KPIs provided by 
mechanistic models. KPIs are computed using 
DYNAMOprediction. 

The predicted KPIs are provided by DYNAMOprediction 

considering the estimated values of hidden parameters, and the 
actual KPIs are provided by DYNAMOprediction considering the 
known values of hidden parameters per trajectory. Hence, the 
comparison is between KPIs predicted using estimated hidden 
parameters and KPIs predicted using the true hidden parameters, 
both provided by DYNAMOprediction. For that, as said, the best 
hidden parameters prediction model, i.e., GBM, is used to 
estimate the hidden parameters of the DYNAMO_FP test 
trajectories whose hidden parameters’ true values are also 
provided. We consider the DYNAMO_FP(51) case only, since 
this is closer to the real-world case of model deployment. The 
overall comparison process described is shown in Fig. 6. 

Figure 6.  The overall process for estimating the effect of hidden parameters’ 
estimation errors on the prediction of KPIs 
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3.72 
(0.05%) 

7.41 
(0.01%) 

10 0 
(1.09%) 

2.03 
(0.59%) 

3.72 
(0.07%) 

N/A 

11 0 
(0.92%) 

1.93 
(0.52%) 

3.50 
(0.08%) 

7.43 
(0.01%) 

12 0 
(0.57%) 

1.97 
(0.53%) 

3.63 
(0.05%) 

7.34 
(0.01%) 

13 0 
(0.44%) 

1.95 
(0.32%) 

3.77 
(0.07%) 

N/A 

14 0 
(0.41%) 

1.94 
(0.31%) 

4.11 
(0.07%) 

N/A 

15 0 
(0.33%) 

1.79 
(0.20%) 

4.02 
(0.07%) 

N/A 

16 0 
(0.29%) 

1.74 
(0.15%) 

3.61 
(0.01%) 

N/A 

17 0 
(0.15%) 

1.83 
(0.14%) 

4.35 
(0.01%) 

N/A 

18 0 
(0.18%) 

1.68 
(0.10%) 

3.54 
(0.01%) 

N/A 

19 0 
(0.14%) 

1.78 
(0.06%) 

 N/A N/A 

20 0 
(0.11%) 

1.80 
(0.09%) 

4.42 
(0.01%) 

N/A 

21 0 
(0.06%) 

1.52 
(0.06%) 

3.24 
(0.01%) 

N/A 

22 0 
(0.04%) 

1.44 
(0.07%) 

4.19 
(0.01%) 

N/A 

23 0 
(0.07%) 

1.66 
(0.04%) 

N/A N/A 

24 0 
(0.04%) 

1.75 
(0.04%) 

4.12 
(0.01%) 

N/A 

25 0 
(0.03%) 

1.41 
(0.04%) 

4.90 
(0.01%) 

N/A 

26 0 
(0.04%) 

1.48 
(0.03%) 

3.90 
(0.02%) 

N/A 

27 0 
(0.04%) 

1.59 
(0.01%) 

3.95 
(0.01%) 

7.39 
(0.01%) 

28 0 
(0.02%) 

1.43 
(0.02%) 

3.96 
(0.02%) 

N/A 

Figure 7.  The effect of hidden parameters’ estimation errors on the 
prediction of Fuel [kg]: Rows correspond to absolute differences on 

estimating CI, columns correspond to absolute differences on estimating PL, 
and each cell indicates two values: (a)  the MAPE of predicted vs actual fuel 
for all trajectories with the corresponding differences on CI and PL, and (b) 
the percentages of trajectories in those CI & PL differences. N/A means that 

there where not cases with this combination of CI and PL absolute 
differences. 

Given that DYNAMOprediction predictions for flown distance 
and gate-to-gate time do not differ when DYNAMOprediction 

considers the true or the predicted estimated values of 
parameters, below we report only differences regarding the fuel 
consumption prediction. 

Fig. 7 shows the effect of hidden parameters estimation 
errors on the predictions of fuel consumption. Specifically, Fig. 
7 rows correspond to absolute differences on estimating CI, 
columns correspond to absolute differences on estimating PL, 
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and the values in cells show the mean absolute percentage of 
error (MAPE) in the fuel consumption prediction for all the 
trajectories with the corresponding differences on CI and PL. In 
addition, the percentage of testing cases are reported in 
parentheses in each cell. Results show that both hidden 
parameters play conjunctively a role on increasing the error of 
fuel consumption estimation. However, PL may play a more 
critical role: large errors in PL may be translated to large 
differences in predicted fuel consumption. It is interesting to 
note that more than 78% of all test cases have no error (1st 
column of Table presented in Fig. 7), while the average MAPE 
value of all cases is 0.45 %.  

Furthermore, as Fig. 8 shows, the distribution of fuel 
consumption in all cases, either with the estimated hidden 
parameters or with the true hidden parameters, are the same, and 
this happens (following a t-test on these predictions) with 
probability 0.99.  

This verifies the efficacy of the hidden parameters’ 
estimation methods to support the prediction of trajectory KPIs. 
The MAPE for fuel is below 1%, while for distance and gate-to-
gate-time is 0%. Therefore, we can conclude that estimated 
hidden parameters for known trajectories support the prediction 
of trajectory KPIs with high accuracy. 

This result provides firm evidence to the hypothesis that the 
hidden parameters estimation errors reported have insignificant 
consequences to the prediction of KPIs. 

VI. CONCLUSIONS

This paper explores the use of machine learning techniques 
for the estimation of flights’ hidden parameters from historical 
data. Specifically, it presents a data-driven methodology for the 
estimation of flights’ hidden parameters, combining mechanistic 
and AI/ML models. In the context of this methodology the paper 
proposes and evaluates several AI/ML methods to estimate PL 
and CI. In addition, the paper examines how these estimations 
affect the prediction of KPIs related to flight efficiency: fuel 
consumption, gate-to-gate time and distance flown. The results 
show the accuracy of the proposed methods and the benefits of 
the proposed methodology. 

Future work aims to explore deep AI/ML methods for the 
estimation of hidden parameters, also expanding the set of 
parameters, with the aim to further increase the accuracy of 
estimations and the accuracy of KPI predictions. 
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Figure 8.  The distributions of predicted fuel consumption[kg] given the 
estimations of hidden parameters (top left), and the true hidden parameters 

(top right), as well as the distribution of the absolute difference in the 
predicted fuel (bottom). 
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