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Abstract—During the last decade many successful applications 
combining Automatic Speech Recognition and Understanding 
(ASRU) for Air Traffic Management applications have been pro-
posed and demonstrated. The HAAWAII project developed a ge-
neric architecture and framework, which was validated for, e.g., 
callsign highlighting, pre-filling radar labels and readback error 
detection. It supports recognizing and understanding pilot and air 
traffic controller (ATCo) transmissions. Contextual information 
extracted from available surveillance data, from flight plan data 
and from previous transmissions can be exploited to significantly 
improve ASRU performance. Different design decisions have been 
taken, depending on concrete scenarios. This paper evaluates the 
effect of the design decisions integrated in the HAAWAII frame-
work on overall performance for speech understanding based on 
eight hypotheses, of which seven are validated. Using all frame-
work elements enables command recognition rates for ATCos of 
90% for real-time applications and 93% for offline applications, 
respectively. The most significant impact is achieved, when 
callsign information from surveillance data is available: the com-
mand recognition rate improves by more than 20% absolute. 
Knowing apriori, whether ATCo or pilot is speaking, can provide 
additional improvement in command recognition rate up to 16% 
absolute. The reported results are based on commands from 
apron, approach, and enroute recorded both in laboratory and in 
ops room environment. 

Keywords—Speech Recognition; ABSR; ASRU; Speech 
Understanding; HAAWAII framework; Air Traffic Control; Voice 
Recognition 

I.  INTRODUCTION  

A. Problem 
During the last decade many successful applications of Au-

tomatic Speech Recognition and Understanding (ASRU) for 
Air Traffic Management (ATM) have been demonstrated. Sup-
porting Air Traffic Controllers (ATCos) by prefilling radar la-
bel entries with ASRU based on the architecture described in 
this paper has achieved a Technology Readiness Level (TRL) 
of 6, which was validated in SESAR 2020 funded industrial re-
search [1].  

Many ASRU applications in ATM require a real-time reac-
tion. However, applications such as ATCo workload prediction 
based on the digitized transmission can run offline without car-
ing about the real-time aspect. This could increase recognition 
performance as more computing time can be used to recognize 
the spoken transmission. ASRU needs Speech-to-Text (S2T), 
which transforms an analog or digital speech signal into a se-
quence words, whereas the Text-to-Concept (T2C) part is the 
understanding part. It transforms the sequence of words into 
ATC concepts like callsigns, command types, command values, 
and command conditions. As different requirements exist for 
different ASRU applications, also different architectures might 
be needed. For each application the following research ques-
tions need to be answered: 
 How to decide in real-time, when the transmission starts 

and when it ends, especially when Push-To-Talk (PTT) in-
formation is not available? 

 How to implement the Speech-to-Text transformation, e.g., 
(1) as continuous (real-time) process, (2) only as offline so-
lution executed at the end of the communication, or (3) 
even as different engines specifically for pilot and ATCo?  

 How to decide, whether ATCo or pilot speaks? 
 How to implement Text-to-Concept extraction, e.g., (1) 

continuous semantic extraction, (2) semantic extraction 
only at the end of a transmission, or (3) different instances 
for pilot and ATCo semantic extraction? 

 Is a special recognition engine for callsigns needed? 
 How to implement plausibility checking? Should it be im-

plemented at the end of the understanding process so that 
it only enables deleting extractions with low plausibility or 
during the command understanding process, which enables 
to re-interpret rejected extractions? 

B. Suggested Solution 
The HAAWAII (Highly Automatic Air traffic controller 

working position With Artificial Intelligence Integration) pro-
ject [2] has developed a generic framework, which answers the 
above questions. 
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C. Paper Structure 
Section II gives an overview of related work starting with 

ASRU applications and achievements in ATM and continuing 
with different architectures suggested for ATM applications. 
Sections III describes the HAAWAII framework concentrating 
on the Speech Understanding part. Section IV describes the val-
idation setup, which includes validation hypotheses, metrics, 
and description of the used data sets. Section V reports on the 
validation results before the final conclusions in section VI. 

II. RELATED WORK 

A. Related Work for Speech Recognition and Understanding 
Over the last 70 years, advances have led to dramatic im-

provements in the field of Automatic Speech Recognition 
(ASR). An overview of the first four decades is provided by, 
e.g., Juang and Rabiner [3]. Connolly from FAA [4] was one of 
the first to describe the steps of using ASR in the ATM domain. 
In the late 1980s, a first approach to incorporate speech technol-
ogies in ATC training was reported [5] to replace expensive sim-
ulation pilots.  

The challenges with ASR in ATC today go beyond basic 
training scenarios, where often ICAO phraseology [6] is fol-
lowed very closely. Modern ASR applications have to recognize 
experienced controllers with various accents, who more often 
make deviations from the mentioned standards. Nowadays, ASR 
is for example used to obtain more objective feedback concern-
ing controllers’ workload [7] or readback error detection in the 
US [8] or in Europe [9]. A good overview of the integration of 
ASR in ATC is provided in the paper of Nguyen and Holone 
[10]. A more technical overview is given by Lin [11].  

Radar Label Maintenance supported by Automatic Speech 
Recognition and Understanding (ASRU) has recently achieved 
a Technological Readiness Level (TRL) of 6 being validated in 
DLR’s ATMOS simulation environment [12]. This develop-
ment has started in 2013, when it was shown that Speech Recog-
nition and an Arrival Manager in combination improve each 
other [13]. More systematically, this was analyzed in 2015. The 
term Assistant Based Speech Recognition (ABSR) was born  
[14]. It was shown that application of ABSR reduces ATCos’ 
workload [15]. The same validation trials of the AcListant®-
Strips project also showed that ABSR reduces fuel burn by 60 
liters of kerosene per arrival  [16]. The MALORCA project 
showed how to automatically adapt ABSR to different approach 
areas, i.e., Vienna and Prague, by means of machine learning 
[17]. Commercial-of-the-shelf ASR engines were unable to 
achieve the performance of the MALORCA approach, at least 
in 2019  [18].  

Since speech recognition does not include speech under-
standing, European ATM partners agreed on a so-called ontol-
ogy to ease understanding of approach controller utterances [19] 
being extended to apron controller utterances in the STARFiSH 
project [20] and even more important to pilot transmissions [21]. 
Ontologies for speech understanding were not only evaluated 
and implemented in Europe. Chen et al. compare the European 
and US ontologies [22] [23]. The term ABSR was extended to 
ASRU as it is already common practice in the normal speech 

recognition community for a long time. The experiments of the 
AcListant®-Strips project for Dusseldorf approach were re-
peated for Vienna approach in 2022 with 12 ATCos from Austro 
Control in the context of ASRU. ATCos’ clicking time could be 
reduced from 12,700 seconds down to roughly 400 seconds, a 
factor of 31 [1].  The clicking time is the time between opening 
a menu for e.g. selecting a flight level value until clicking on the 
selected value, i.e. in the example the selected flight level. Only 
4% of the given ATCo commands were missing or wrong in the 
radar label cells when supported by ASRU. Current operational 
practice in the ops room is manual command input without 
ASRU support. In this case 11% missing or wrong inputs were 
observed [12]. The deployed architecture was developed in the 
HAAWAII project and is described in the next section. Before 
we give a short overview of other architectures to support ASRU 
in ATM. 

B. Related Work with Respect to Architectures 
In the context of ABSR, DLR and Saarland University have 

introduced the architecture, which is based on an available Arri-
val Manager [14], shown in the left part of Figure 1. 
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Speech Recorder
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Speech Recognizer

Command Extractor
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Radar Interface

Scheduler

Conformance Monitor

...
 

Figure 1. Assistant-Based Speech Recognition Architecture based on an Arri-
val Manager 

The middle part of Figure 1 shows the modules relevant for 
this paper. The Hypotheses Generator creates hypotheses about 
possible ATCo commands, which includes callsign, command 
types and also command values. The Plausibility Checker 
checks whether extracted commands make sense in the current 
situation. The Command Monitor continuously checks, whether 
previously recognized command are consistent with radar data. 

22 European ATM partners have agreed on the building 
blocks of ASR in the EATMA architecture (European Air Traf-
fic Management Architecture) [18] as shown in Figure 2.  

Command 
Prediction

Usage of Speech 
Information

Weather

Radar
Concept 

Extraction

External Data

Voice Communication 
System (VCS)

FB Automatic Speech Recognition  
Figure 2. Integration of Automatic Speech Recognition into EATMA (taken 

from [18] ) 
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The functional block Automatic Speech Recognition receives 
an audio signal as input and transforms it into a sequence of 
words, which is transformed into a sequence of ATC concepts 
by the Concept Extraction module. The resulting concepts can 
be used for further applications, i.e. by Usage of Speech Infor-
mation. The Command Prediction function is optional predict-
ing full commands or just callsigns. More details are described 
in [24].  The EATMA architecture of ASR was improved in So-
lution PJ.10-W2-96 ASR of the SESAR 2020 Industrial Re-
search in 2023; see Figure 3 taken from [25]. The Command 
Prediction function is kept. The Concept Extraction function of 
Figure 2 is split into Recognize Voice Words, also known as 
Speech-to-Text, and Apply Ontology and Logical Checks, which 
corresponds to Text-to-Concept in the HAAWAII framework.  

Figure 3. Resource orchestration view: Differentiation between Speech 
Recognition (middle part) and Speech Understanding (right side) [25] 

Figure 4 shows the ASRU pipeline suggested by MITRE 
[26]. It addresses detecting start and end points and the speaker 
classification, i.e., whether ATCo or pilot is speaking. 

 
Figure 4. Recognition and Understanding pipeline suggested by MITRE [26] 

III. THE HAAWAII FRAMEWORK 
The HAAWAII framework describes the process of how to 

transform an ATC audio signal into conceptual elements, which 
can be incorporated into all sorts of ATM applications. We first 
describe the full framework for automatic speech recognition 
and for automatic speech understanding. Then detail the speech 
understanding framework, before we describe the final con-
sistency check of the extracted commands in the last subsection 

A. Automatic Recognition and Speech Understanding 
Framework 
The ASRU framework considers ATCo and pilot voice 

transmissions. It provides means to link both together to benefit 
from the dialogue nature of ATCo-pilot communications. The 
core components of the HAAWAII framework are shown in Fig-
ure 5. The blue arrows show the way of the audio signal or more 
precisely the information derived from the audio signal by the 
different processing steps. 

 

 
Figure 5. The HAAWAII Framework 

The green arrows show how surveillance data and flight plan 
information are incorporated into the process to enhance the 
overall quality. The major input into the HAAWAII framework 
is an audio signal containing ATCo-pilot communications. It 
considers that the audio signal might not come in the form of 
already split transmissions, but it is prepared to accommodate 
the fact that all transmissions might be within a single audio 
stream. Therefore, the framework implements Voice Activity 
Detection (VAD), which splits the continuous audio stream into 
individual transmissions. A VAD is prone to errors. Either we 
can have over-splittings, i.e. splitting within a transmission or 
under-splittings, i.e. no splitting between independent transmis-
sions. Splitting too late in a real-time application also implies a 
late final output to the application. When VAD indicates the start 
of a transmission the audio signal is immediately forwarded to 
the so-called speaker classification (Class) deciding, e.g., 
whether the ATCo or the pilot is speaking.  

After Class the audio signal is passed into a Speech-to-Text 
(S2T) component to initiate the recognition process on a text-
based level, i.e. the audio signal is transformed into a sequence 
of words. The framework supports that the used S2T component 
is capable of producing intermediate recognitions, i.e., S2T does 
not need a complete voice transmission to produce reasonable 
outputs. Instead, it can continuously receive audio and updates 
the recognized sequence of words, until the end of a voice trans-
mission is reached, i.e., S2T could provide word sequences in 
increments, which allows analysis of a voice transmission even 
before it has ended. 

The HAAWAII framework overall aims at producing a high-
quality output for speech-based ATM applications. For this pur-
pose, it integrates contextual knowledge wherever possible with-
out the need for many additional sources of information. Con-
textual information is incorporated by the integration of surveil-
lance data and flight plan information. The framework describes 
for that purpose a component to predict callsigns and/or com-
mands (Prediction), which are likely to be part of a voice trans-
mission in the near future. This information can then be for-
warded to S2T and T2C to improve the recognition performance. 
For example, a callsign abbreviated on purpose in the voice com-
munication can only be recognized correctly, if the full form of 
the callsign is available from contextual knowledge. 

B. Speech Understanding Framework 
The output of Prediction and S2T, regardless of whether it is 

an intermediate increment or the final transmission, is forwarded 
to the Text-to-Concept (T2C) component often also referred to 
as Concept Recognition. T2C performs a semantic interpretation 
(speech understanding) of the word sequence content. The result 
is a transformation to instructions with conceptual elements such 
as callsign, type, value, unit, qualifier etc. as defined in the on-
tology for ATC communication in [19].  
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This incremental output from S2T and subsequently also 
from T2C allows the application to benefit very early from the 
callsign information if the callsign is said in the beginning of the 
transmission. Also, some instructions are available before the 
complete transmission is finished. The following paragraphs de-
scribe in more detail, how the different blocks of T2C shown in 
Figure 6 interact with each other to produce the described output. 
Whenever an output from S2T reaches the T2C component it is 
used as input into the Understand block, which has three differ-
ent instances, one if the speaker was detected as pilot, one for 
ATCo and a third, when no speaker information is available. 
With the information from Class this block selects the appropri-
ate instance and applies the mentioned ontology to make the 
transformation into commands (instructions). 

 
Figure 6. T2C including understanding and context from dialogue  

The Understand block also includes a type-dependent vali-
dation of each individually extracted command, e.g., parts of the 
transmission may indicate a QNH command by the maybe 
wrongly recognized word QNH, but no four-digit related QNH-
value can be found or a possible frequency change is detected, 
but the recognized frequency is not among the allowed frequen-
cies configured for a given sector or area. If such a validation 
fails, all words from the word sequence that were linked within 
the process to be relevant for the respective command remain 
free to be possibly linked with other commands.  

C. Consistency Check of Understanding 
The Dialogue block following the Understand block tries to 

eliminate ambiguities by incorporating information from the pi-
lot-ATCo dialogue. Especially pilots often abbreviate read-
backs, because they directly respond to clearances from an 
ATCo. A pilot response could perhaps just be “one hundred 
roger”. In this example, only contextual dialogue knowledge 
from the preceding ATCo transmission makes it possible to fig-
ure out, which aircraft did respond and if “one hundred” was a 
response to e.g. an instructed heading or a flight level. 

When the whole ATCo-pilot communication has been rec-
ognized, the final validation of all callsigns, commands etc. are 
validated by Transmission Validation. This ensures that not both 
a turn to the RIGHT and LEFT direction are extracted from the 
same transmission, which is unlikely to be correct. Based on 
heuristics this block then removes all commands which are less 
probable. 

The feedback loop in Figure 6 from Transmission Validation 
to Understand enables to correct errors made by the VAD block. 
For example, it might occur that VAD has decided to split the 
transmission “lufthansa one alfa taxi november november eight” 
after the word “taxi”, because the ATCo made a short pause, and 
VAD detected this as end of transmission. This error by VAD 
means that T2C receives two independent transmissions 

“lufthansa one alfa taxi” and “november november eight”. Be-
fore sending the result of a transmission to the application, T2C, 
therefore, evaluates if two transmission, which appeared very 
close together, could be part of an error made by VAD. If that 
could be the case, the two transmission are combined into one 
and the whole process starting from Understand will be exe-
cuted again. 

First implementations of the framework already exist for 
TRL6 to support approach controllers for pre-filling radar label 
entries [1], for ATCo and pilot communication for London Ter-
minal Maneuvering Area (TMA) and Isavia enroute airspace [9], 
to support Frankfurt apron controllers and simulation pilots [27], 
and to support multiple remote tower operations [28]. 

IV.  VALIDATION SETUP 
The first subsection enumerates the validation hypotheses. 

Subsection IV.B describes the metrics to verify or falsify the hy-
potheses and the last subsection IV.C presents the voice and sur-
veillance data sets from Frankfurt apron, Vienna approach, Lon-
don approach and TMA and Isavia’s oceanic traffic, which were 
available to calculate the metrics. 

A. Validation Hypotheses 
S2T of HAAWAII is evaluated in [29]. We concentrate on 

the T2C and the Prediction components, shown in Figure 5. The 
following validation hypotheses based on the research questions 
from the introduction are evaluated: 
H1. Integration of contextual knowledge, i.e. the list of availa-

ble callsigns in the current airspace situation, into Concept 
Extraction, improves the command extraction perfor-
mance. 

H2. Integration of contextual knowledge improves the callsign 
extraction performance.  

H3. Integration of contextual knowledge from the pilot-ATCo 
conversation, i.e. the previous utterances, improves 
callsign extraction performance and command extraction 
performance. 

H4. Different models for pilot and ATCo command extraction 
outperform having just one common model. 

H5. Integration of command validation into the T2C does not 
only reduce the command error rates, but also increases the 
command extraction rates. 

H6. The T2C block can repair over-splittings of the Voice Ac-
tivity Detection (VAD). 

H7. Integration of plausibility values from S2T on word level 
improves T2C performance. 

H8. Integration of plausibility values from semantic interpreta-
tions improves T2C performance. 

B. Metrics 
For validating or falsifying the hypotheses of the last subsec-

tion we use the following metrics, which are introduced in [14] 
and detailed by Chen et al. [23], resulting in a simple scheme for 
measuring performance on semantic level. The scheme  is inde-
pendent of semantic concept type or subcomponents and treats 
all semantic components with equal importance.  
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TABLE I.   DEFINITION OF BASIC METRIC ELEMENTS 

Name Definition 
TP: True 
Positive  

Total number of True Positives: The concept is present and 
correctly and fully (including all subcomponents) detected.  

FP: False 
Positive  

Total number of False Positives: The concept is incorrectly 
detected, i.e., either the concept is not present at all or one or 
more of its subcomponents are incorrectly detected. 

TN: True 
Negative  

Total number of True Negatives: The concept is correctly not 
detected, because the concept is not present. 

FN: False 
Negative  

Total number of False Negatives: A concept is not detected 
when it should have been. 

TA: Total Total number of annotated concepts, i.e., gold concepts. 

We use the metric for both the performance for command 
extraction and for callsign extraction. Table I lists definitions 
that are the building blocks for the performance metrics. From 
the five building blocks we can derive recognition rate and 
recognition error rate (Eq.1, 2). Additionally, we define in Eq.4 
the F�-Scores by defining Recall and Precision (Eq.3), where α 
is here a parameter to either emphasize precision or recall. 

��� =  ����������� ���� =
�� + ��

��
 (1) 

��� =  ����������� ����� ���� =
��
��

 (2) 

������ =
��

�� + ��
; ��������� =

��
�� + ��

 (3) 

F�Score =  
(1 + α�) ∗  Recall ∗ Precision

(�� ∗ ���������) + ������
 (4) 

C. Description of Available Data Sets 
Overall, six different data sets, described in table II, are used 

for the evaluation of the hypotheses. Two data sets result from 
simulation environment (lab) and four from the operational en-
vironment. Noisy pilot recordings and ATCo transmissions are 
available. Row “#Transmissions“ contains the number of dif-
ferent transmissions consisting of one or up to eight different 
commands, whose sum is shown in row “#Cmds”. Transmis-
sions are only considered, if both the manual transcription and 
the manual annotation, i.e. the extracted commands, are availa-
ble. Row “WER” shows word error rates calculated as Le-
venshtein distances between reference transcript and hypothe-
sized ASR output. WER varies between 1.8% and 6.2% for dif-
ferent dataset and presents the quality of the S2T output, which 
is the base input for T2C and, therefore, influences its perfor-
mance. Rows “ReR” show the achieved command recognition 
rates and callsign recognition rate (CsgnR) for an ideal S2T en-
gine with a WER of 0%. The performance is worse for the data 
from the ops room. Row “No class” shows the percentage of 
words, which were not used by the command extraction algo-
rithm to extract the commands. The enroute transmissions from 
Isavia show a high variability in the used word sequence, which 
often do not contribute to a command.  

Row “Ø CsgnP” shows the average number of callsigns, that 
the Prediction module assumes will receive a command in the 
next few minutes. The number is quite high for the NATS air-
space with overflights, departures, arrivals and VFR flights. 
Row “Csg Pred Err” shows the callsign prediction error, i.e. the 
percentage of callsigns, which get a command, but are not in the 
set of predicted callsigns. 

TABLE II.  DATA SETS FOR HYPOTHESES EVALUATION 

 
Frank 
furt 

Vienna 
App 

NATS 
ATCo 

NATS 
Pilot 

Isavia 
ATCo 

Isavia 
Pilot 

Noise cond. Lab Lab Ops room Ops room 
Flight Phase Apron Appr London TMA Enroute  

Year 2022 2022 2020 2020 
#Transmissions 6362 8856 2060 2415 1484 1765 

# Cmds 15495 17096 3596 4404 3012 3465 
WER 3.2% 3.1% 1.8% 4.6% 3.1% 6.2% 
RcR 97.1% 99.1% 92.3% 91.0% 92.2% 89.2% 

CsgnR 99.1% 99.8% 98.4% 98.2% 98.1% 97.8% 
No_class 6.0% 2.8% 10.2% 10.2% 20.6% 19.4% 
Ø CsgnP 9 21 51 51 19 19 

Csg Pred Err 2.3% 0.02% 4.1% 5.5% 
N of t-Test 55 48 19 18 13 13 
 

In the lab environment the number is quite small. No flight 
plan information, but only surveillance data, was available for 
Isavia’s airspace with the consequence that all callsign with des-
ignator FEI (arctic eagle) were not predicted, which explains the 
high number of spoken, but not predicted callsigns. Row “N of 
t-Test“ contains the number of different speaker sessions lasting 
from 30 to 120 minutes being available for the performed t-tests 
to check for statistical significance in the following section with 
the results. 

V. VALIDATIONS RESULTS 
The results presented in this section follow the structure 

shown in Table III. The main columns always differentiate be-
tween performance on “Command” and “Callsign” level. “Com-
mand” refers to the performance on complete commands includ-
ing all relevant elements such as callsign, type, unit, qualifier 
etc. “Callsign” solely refers to the correct or wrong recognition 
of the aircraft callsign. The results in these columns are sepa-
rated in the child columns “Recognition” and “Error”, which in-
clude the achieved metric value (Rate) and the p-value (α) 
gained by paired t-tests to show if the results with respect to the 
presented hypotheses are statistically significant or not. We de-
fined p-values below 5% as statistically significant and mark 
cells in green, if that is achieved. 

We use different color coding taken from [1]  to visualize, 
how statistically significant a hypothesis is: Light green color is 
used for 5%<= p-value <10%. Negative values point to evidence 
that the counter hypothesis could be true. Orange color shows 
that a counter hypothesis got a p-value between 0% and -5%. If 
the counter hypothesis would have been only slightly supported, 
i.e., we have p-value between -5% and -10%, we would have 
used light red. This case, however, does not occur in our data 
set. In cases, with statistical evidence neither for the hypothesis 
nor for the counter hypothesis, we use a yellow color. In sum-
mary, positive p-values indicate a trend for the hypothesis and 
negative values for the counter hypothesis. 

A. Integration of Surveillance or Flight Plan Data 
First, we verify the hypotheses H1 and H2, whether using 

callsign information from surveillance or flight plan data im-
proves the performance of T2C. In baseline scenarios (rows with 
“B” in Table III) the T2C component received information about 
available callsigns.   
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TABLE III.  CONTEXT INFORMATION INCREASES PERMORMANCE 

 

In test scenarios to evaluate the hypotheses, the callsign in-
formation was not available (rows with “H”). The results in table 
III clearly show that using callsign information dramatically im-
proves the extraction rates and reduces the error rates for all con-
sidered data sets for both ATCo and pilot utterances. The p-val-
ues of 0.0% mean that p-value is even less than 10-20=1.E-20. 
The p-values for NATS and Isavia data are statistically very sig-
nificant, but higher. The difference to Frankfurt and Vienna is 
the number of compared data sets. Isavia data consists of only 
13 data sets, where Frankfurt data considers 55 data sets. Hy-
potheses H1 and H2 have been clearly validated. 

B. Integration of Context from last Utterance 
The next hypothesis verifies, whether it has benefits to ex-

ploit context information from the last transmission, when inter-
pretation of the current transmission is done (block Dialogue of 
T2C). Table IV shows the results. “undef” means, that statistical 
significance cannot be calculated, because the results for each 
data item are the same, i.e. the standard deviation is zero. 

The yellow color in many cells indicates that using infor-
mation from the last transmission has no real effect in those 
cases. Desired effects can be seen for interpretation of pilot ut-
terances for both Isavia and NATS airspace and also for both 
command recognition and callsign recognition error rate. 
Callsign improvements are only seen for NATS. It is not surpris-
ing that we have no improvement for Frankfurt and Vienna data, 
because these data sets only contain ATCo transmissions. The 
error rate even goes statistically significant into the “wrong” di-
rection, which hints to an error in the implementation as it obvi-
ously also links ATCo transmissions to each other. One example 
is a transmission in which the ATCo says “lufthansa four four 
six“; the S2T instead recognizes “lufthansa four five six …”. The 
Prediction component tells us that DLH446 and DLH457 are 
present. Both callsigns are equally close to the recognized words 
with just one deviation. The previous transmission five seconds 
ago was recognized as DLH457. Therefore, the Dialogue com-
ponent assumes that this time it must also be DLH457. The hy-
pothesis H3 is falsified, to improve ATCo transmissions if only 
ATCo and no pilot data is available. 

TABLE IV.  CONTEXT INFORMATION FROM LAST UTTERANCE 

 
C. Different Models for ATCos and Pilots Transmissions 

For verifying the hypothesis on different models for ATCo 
and pilot transmissions, we have first evaluated the extraction 
performance with the generic model (rows “Gen” in table V), 
i.e., if no speaker information is available. Then it was analyzed 
what happens if the speaker's information is incorrect by using 
the pilot's model for the ATCo and vice versa (rows “Wrong”).  

TABLE V.  USING GENERIC OR WRONG EXTRACTION MODEL 

 
The Frankfurt data shows only minor effects, but statistically 

significant for command extraction. The decrease in command 
recognition rate by 1.1% and 2.3% absolute is important for 
Frankfurt and Vienna, respectively, when using the wrong 
speaker model. No effects are observed for NATS ATCo data, 
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but for Isavia ATCos, the recognition rate improves compared 
to using the wrong model.  

For pilot data, however, a big improvement for both NATS 
and Isavia data and for both command and callsign extraction is 
observed. Only the command recognition error rate for Isavia 
pilot data has changed into an unexpected direction. It decreases 
from 5.7% to 5.5%, when the generic model instead of the cor-
rect pilot model is used. The reason is on command level and not 
the wrong extraction of the callsign, because callsign recognition 
error rate increases when only using the generic model. Further 
investigation is needed, but on the other hand this is the prize for 
the better callsign extraction rate, which improves from 78.7% 
to 81.3. The F1-score, combining error rate and extraction rate, 
improves from 86.8% to 88.5, when knowing who is speaking. 
Hypothesis H4 has been validated. 

D. Intermediate and Final Semantic Command Checking 
Section III describes two validation (checking) steps in-

cluded in the T2C component. The first validation is part of the 
Understand block and evaluates commands independent from 
each other. The second validation is performed at the end by 
Transmission Validation, validating commands in relation to 
each other.  For hypothesis H5 we evaluate the influence of both 
validation steps separately. The results are shown in table VI. 
The “Base” rows contain the results, when all implemented val-
idation steps are active. “NoCheck” means the individual valida-
tion of commands from the Understand block is switched off. 
The rows “NoPost” contain the results, when the post validation 
from Transmission Validation is switched off, where commands 
are validated in context to each other.  

The results in table VI show that the individual validations 
of commands (rows “NoCheck”) not only reduce the error rate, 
but also increase the command recognition rate. 

TABLE VI.  EFFECT OF EARLY AND LATE COMMAND CHECKING 

 
 

The results are statistically significant for all data sets. We 
observed the highest improvement for NATS pilot data. The in-
dividual validation improves the command recognition rate from 
83.6% to 84.8% and the error rate is reduced from 7.2% to 6.7%. 
The small differences between Base on the one hand and No-
Check and NoPost rows on the other hand show for some data 
sets that slight improvements are still possible. The callsign ex-
traction performance is only slightly affected, because the 
checkings focus on the command types. Hypothesis H5 has been 
validated 

E. Repairing Over-Splittings from Voice Activity Detection 
For validating hypothesis H6, we used the data of Frankfurt 

Apron. Over-Splitting corrections was active during four of the 
five simulation days. As shown in table VII, 8849 utterances are 
considered. These are more than the 6362 utterances considered 
in table II, which only include utterances for which also manual 
annotations, i.e. speech understandings, are available. 

TABLE VII.  CORRECTION OF OVER-SPLITTING RESULTS 

 
We merge two utterances, i.e. assume over-splitting, if the 

time difference between the start of the second utterance and the 
end of the last utterance is small, i.e. <2.5 seconds, and we do 
not extract two different callsigns from them. The algorithm suc-
cessfully merged 219 times. 40 times an over-splitting occurred, 
but it was not repaired. A merge never occurs, when no over-
splitting has happened (FP=0). In 2.9% of the utterances we had 
an over-splitting, which could be repaired in 84.6% of the cases 
(column “Recall”). Most of 40 FN are observed, when the wrong 
over-splitting occurred within the callsign. All in all, repairing 
over-splitting improves recognition performance, i.e. the com-
mand recognition rate improves by 2.5%. We validated hypoth-
esis H6.  

The repairing algorithm is only the second-best choice. In an 
operational scenario a direct access to the push-to-talk (PTT) 
signal should be incorporated in the VAD process to avoid split-
ting problems at least for the ATCo transmissions. 

F. Improving Extraction Performance by Plausibilty Values 
Both S2T and T2C have plausibility values as output. S2T 

outputs so called N-best lists, i.e. we do not only get one se-
quence of words, but for each word the most probable ones to-
gether with plausibility values between 0.0 and 1.0. T2C also 
outputs a plausibility value for each extracted concept element. 
Accepting only extracted commands above a given threshold en-
ables to find a compromise between a high command recogni-
tion rate RcR and a low command recognition error rate RER. 
Eq. (4) combines them both in the F-score. The participating air 
traffic controllers mostly put emphasis on low error rates. There-
fore, we choose F-0.5, which puts more emphasis on the preci-
sion and not on recall. The precision considers the false posi-
tives, i.e. the errors. Figure 7 shows the F-0.5 scores for different 
plausibility values on command level. A plausibility value be-
tween 40% and 60% is a good compromise for high recognition 
and low error rates.  
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Figure 7. F-0.5 Scores on command level considering both word and semantic 

level 

 Figure 8 shows the F-0.5 scores for different plausibility 
values on callsign level. A plausibility value between 70% and 
80% seems to be the best compromise. For Frankfurt we even 
got the best values for 95%. 

 
Figure 8. F-0.5 Scores on callsign level considering both word and semantic 

level 
We calculated the F-0.5 scores considering plausibilities (1) 

only on word level, (2) only on semantic level, and (3) combin-
ing both levels. Considering only the word level is slightly 
worse. The hypotheses H7 and H8 are validated given the F-0.5 
scores. 

VI. CONCLUSIONS 
A framework for Automatic Speech Recognition and Un-

derstanding (ASRU) for Air Traffic Management Applications 
was presented, which strictly distinguishes between transform-
ing a speech signal into a sequence of words and its semantic 
interpretation. The framework was initiated by the HAAWAII 
project and successfully extended to industrial research with ap-
plication for apron, remote tower, approach, sector, and enroute 
control. Our ASRU architecture enables a variety of air traffic 
control applications for all flight phases and has proven to be 
usable with lab and operational data. Some mechanisms such as 
integrating contextual knowledge have been clearly validated 
and are a must for all ASRU applications in ATM, whereas oth-
ers might require tweaking or are dependent on the environ-
ment. 

The framework enables to correct 85% of over-splitting er-
rors resulting from voice activity detection enabling fast real-
time and continuous recognitions without needing to wait for 
start of recognition, until the speaker has ended. Integration of 
context knowledge, i.e. callsign information from surveillance 

data and knowing whether ATCo or pilots talk improves com-
mand extraction rates by up to 30% absolute. Integration of 
callsign information is quite robust, i.e. missing callsigns and 
also long lists of more than 100 possible callsigns are tolerable.  

Using context information from the last transmissions im-
proves understanding of pilot utterances – who often abbreviate 
their readbacks – with positive effects on the recognition rates, 
but with small negative effects on the error rates. Checking each 
extracted command alone or after processing the whole utter-
ance slightly improves both command recognition rates and 
also command recognition error rates, i.e., both by 1% absolute. 
Using plausibility values on semantic level and/or on word level 
from N-Best lists slightly decreases recognition rates, but de-
creases the error rates for both command and callsign extrac-
tions. If low error rates are more important than high recogni-
tion rates, plausibility values are another must. 
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