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Abstract—Contrails contribute to global warming by trapping
outgoing terrestrial radiation, exerting an immediate warming
influence on the climate. The climatic impact of contrails is
potentially comparable to that of aviation’s carbon emissions.
This underlines the importance of minimizing contrail formation
to mitigate the climate effects of aviation, both now and in the
future. The evaluation of contrails demands more precise data
on the location and altitude where they form. Remote sensing
imagery enables the identification of their location. Nevertheless,
determining the altitude of the contrail remains problematic,
complicating the identification of the source flight. This study
introduces a novel method that enables researchers to determine
the altitude of a contrail solely using Landsat data by analysing
shadows cast by contrails. Through validation against ADS-B
data from OpenSky, we demonstrate that such a technique can
achieve the accuracy of a few hundreds of meters, which is suit-
able for incorporation into a climate-optimized routing system.
Finally, a ResUNet segmentation model is also presented, which
can identify contrails and their shadows in Landsat imagery.
These results constitute a step forward for more accurate contrail
dataset and models.

Keywords—Sustainability, Contrails, Remote Sensing, Atmo-
spheric Science, OpenSky, Aircraft Surveillance Data

I. INTRODUCTION

With the number of flights continuing to rise globally, avi-
ation’s climate impact is also growing, making sustainability
one of the biggest challenges facing the aerospace industry
today. The most significant individual contributor to aviation’s
total radiative forcing at shorter timescale is the formation
of contrail cirrus, albeit with some uncertainties [1]. While
carbon dioxide emissions today influence global warming on
a timescale of 20–40 years, the warming effect of contrails is
immediate [2]. This emphasizes the importance of minimizing
contrail formation as a means to promptly limit aviation’s
climate impact and secure a sustainable future.

The successful implementation of a climate-optimized rout-
ing system [3], designed to avoid contrail formation, hinges
on an adequate understanding of the atmospheric conditions
conducive to either the formation or absence of contrails. The
aircraft’s altitude is a crucial factor. To achieve this, knowing
the location and more importantly the altitude at which the
contrails form are essential, as this dictates the atmospheric
conditions allowing for contrail formation. Knowledge of these
atmospheric conditions will allow for creation of a climate-
optimized routing system.

While remote sensing-based methods for determining at-
mospheric conditions through contrail location (including its

altitude) have proven effective in quiet airspace [4], a robust
model, as described above, necessitates a larger dataset for
training. This would entail the challenging task of linking
contrails observed in infrared imagery to flight data, such
as ADS-B [5], [6], to extract contrail-forming atmospheric
conditions. This is why a methodology to determine contrail
forming altitudes, that does not require the assignment of flight
trajectories to contrails, namely through shadow detection, will
be explored here.

In the remote sensing field, shadow detection is an essential
data processing step to ensure the quality of satellite images,
which are often partially obscured by clouds. Clouded and
shadowed imagery complicates the use of optical Earth ob-
servation satellites, as they cause a brightening and darkening
effect, respectively [7]. These can be seen in Figure 1, a true-
color image illustrating a contrail, its associated shadow, and
cirrus clouds in the upper left corner.

Figure 1. LANDSAT 8 True Colour RGB on April 4th 2017, West Queensland
in Australia, with contrail visible as white diagonal stripe and the shadow it
casts above to the South.

Using shadow locations as a determination of cloud height
is commonly applied in the determination of plume heights
of volcanic eruptions, which is an important parameter for
dispersal dynamics and their eruption intensity [8]. By using
the shadows cast on the Earth’s surface and solar geometry,
plume or cloud heights can be determined, as demonstrated in
Figure 2.



Figure 2. Sun and cloud (shadow) geometry, with indications of the solar
zenith angle (SZA), the ground distance (horizontal red arrow) and the cloud
height (blue arrow h). To summarize: h = cos(SZA) * ground distance

Traditionally, this shadow method is often performed man-
ually and for one volcano at a time. Besides this being time-
consuming for a large amount of contrails, contrail detection
requires identifying linear features, a task that could rely on
computer vision techniques [5].

Fully utilizing the recent advancements in this field, this
paper presents a U-Net segmentation model, which was trained
to detect both contrails and their shadows.

Subsequently, using the methodology outlined in Figure
2, the contrail and aircraft altitudes are determined. These
altitudes are validated against ADS-B flight data from Open-
Sky, gauging the methodology’s precision and suitability for
integration into a climate-optimized routing system.

Once local altitude specific atmospheric data has been in-
corporated into these contrail forming flights, this atmospheric
dataset will form the basis of a future climate-optimized
routing model, which could then be incorporated into ATC
planning similarly to a weather forecast.

The paper is organized as follows: it begins with an
introduction to the open-source data used. Following that,
the methodology is explained, along with an overview of
the ResUNet’s structure. The subsequent sections present the
validation results and the outcomes of the ResUNet model,
followed by a discussion of these results. The paper concludes
with a summary of key findings.

II. DATA

A. LANDSAT 8

We obtained LANDSAT 8 imagery using the sat-search
STAC API1, which provides access to NASA’s Earth Observ-
ing System Data and Information System (EOSDIS) services.
The Landsat 8 satellite operates in a sun-synchronous orbit
with a 10:00 AM local time equator-crossing overpass, cap-
turing data for every point on Earth approximately once every
16 days.

1https://github.com/sat-utils/sat-search, (last access: November 21, 2023)

TABLE I: LANDSAT 8 BANDS CHARACTERISTICS

Bands Wavelengths
(µm)

Spatial
Resolution (m)

Band 1: Coastal Aerosol 0.43 - 0.45 30
Band 2: Blue 0.45 - 0.51 30
Band 3: Green 0.53 - 0.59 30
Band 4: Red 0.64 - 0.67 30
Band 5: NIR 0.85 - 0.88 30
Band 6: SWIR 1 1.57 - 1.65 30
Band 7: SWIR 2 2.11 - 2.29 30
Band 8: Panchromatic 0.50 - 0.68 15
Band 9: Cirrus 1.36 - 1.38 30
Band 10: Thermal Infrared 1 10.6 - 11.19 100
Band 11: Thermal Infrared 2 11.5 - 12.51 100

LANDSAT 8 offers 11 bands with varying wavelengths and
spatial resolutions, as detailed in Table I. Besides these bands,
the QA (Quality Assessment) band was also downloaded,
which represents the usefulness of each pixel. The QA band is
primarily used to filter out pixels with cloud cover, based on
tests on the spectral bands in Table I. Besides (cirrus) cloud,
snow and ice cover, water pixels are also identified. This QA
water filter was applied, since during the initial training of
the model, it became apparent that rivers were incorrectly
identified as contrail shadows.

When downloading through the EOSDIS services, .tif files
for each of the bands in Table I are collected, as well as the
metadata file containing the geographic extent, sensing time,
and the solar zenith angle of the Landsat images.

B. ADS-B data from OpenSky

The OpenSky Network has been collecting global air traffic
surveillance data since 2013, including unfiltered and raw data
from ADS-B, Mode S, TCAS, and FLARM messages [9]. The
geoaltitude from the GNSS (GPS) sensor onboard the aircraft
is used as validation value for the altitude determined through
the shadow-contrail distance. However, geoaltitude indicates
the vertical distance of an aircraft from a reference ellipsoid
indicating sea level. To correct this, an elevation correction is
applied.

ADS-B data from OpenSky was used to manually validate
the calculated contrail altitudes of the detected contrail-shadow
pairs. Only cases were used where the risk of incorrect flight
track to contrail assignment was minimal (unique flight tracks
or uncrowded airspace). This left 56 labelled flights.

III. METHOD

In this section, the models and methods used to determine
contrail altitude based on their shadows are discussed.

A. Identifying contrails and their shadows

Contrails are not easily identifiable from unprocessed satel-
lite data, since a contrail can be just a few meters wide [10],
can be similar in appearance to cirrus clouds and be somewhat
transparent in RGB imagery.

On the other hand, contrail’s linear geometry can help in
differentiating them from the background. Contrails and cirrus
clouds are atmospherically similar, so infrared channels which
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(a) Band 9: Contrails visible (b) Band 7: Shadows visible (c) True colour: Contrails and shadows

(d) Manually labelled contrails (e) Manually labelled shadows (f) QA pixel band

Figure 3. Six Landsat 8 images from March 3rd 2015, near Joshua Tree National Park, California, USA. The images are rotated so north is towards the top
of the image. The scene size of each image is 185x180 km.

are used to identify cirrus clouds can also be used to detect
contrails.

The identification and labelling of shadows also relies on a
similar linear feature. However, it is more challenging as the
background impacts shadow detection more significantly than
with contrails. This difference in background impact is clearly
visible in comparing Figure 3 (a) with (b). We determined
shadow locations based on true-colour RGB images and Band
7, because cloud shadow scattering is strongest in the short
wavelengths, such as SWIR (short-wave infrared) [11].

The manual labelling was done in GIMP, which is an open-
source raster graphic editor. It allows for efficient switch-
ing between image layers, while maintaining alignment. The
individual bands were normalized and by using GIMP’s
shadow/highlight tool the contrast within an image was in-
creased, to make the labelling easier. Once two vector sets
were drawn, one indicating contrails and another for shadows,
these vectors were mapped onto an empty raster layer, with a
stroke of 20pt.

In Figure 3, six Landsat images are shown, in (a), (b), (c)

and (f) the images used in the labelling process, and in (d)
and (e) the resulting labelled images for the contrail and the
shadows.

B. Determining shadow distance with Hough transformation

Our objective is to find the pairs of contrail and shadow that
belong to each other, calculate the distance between the pair,
and then apply the principle sketched in Figure 2 to determine
the altitude of the contrails.

In Figure 3. (d) and (e), we can see that the contrail and
shadow are shifted in location, but the lines are essentially
parallel. This angle similarity and a shift in distance will
be exploited to pair the two together, by using the Hough
Transform [12].

The Hough transformation allows lines from the Cartesian
coordinate system to be presented as points in a polar coor-
dinate system, where the similar angular values in the Hough
space indicates that the original lines are parallel. Furthermore,
for parallel lines in Cartesian system, their distance can also
be calculated easily in the Hough space.
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The Hough Transform maps patterns to a parameter space,
meaning that a line (y = ax + b) in the image space (x-y)
represents a point in the parameter space (ρ = x cos(θ) + y
sin(θ)). ρ is the distance from the origin to the closest point
on the line, and θ the angle between the horizontal axis and
the new line. This is visualized in Figure 4.

Figure 4. Example of Hough transform

Each contrail and shadow line was represented as a point in
the parameter space, as illustrated in Figure 5. The proximity
between these points indicated similarities in their slopes and
spatial closeness, as shown in Figure 5.

After associating each shadow with a contrail, the orthog-
onal distance between these two lines is calculated as the
difference in the distance from the origin to the closest point
on each straight line (ρ (rho) in the parameter space). The unit
of this distance is pixels, which can be converted into meters
by multiplying it by 30 (the grid cell size of Landsat’s thermal
imagery).

C. Calculate contrail altitude

In order to ensure this ground distance from contrail to
shadow is orthogonal, a correction was applied based on the
sun’s azimuth. The Sun’s position as relative to an observer
on the Earth surface is determined by the azimuth and zenith
angles. The zenith angle is indicated as SZA in Figure 2,
and is the vertical angular distance between the Sun and the
horizontal plane. The azimuth angle is the angular distance
measured clockwise from directly north.

contrial altitude =
hough distance

sin(sun azimuth −∆θ))
∗ tan(SZA))

D. Neural network model for contrail and shadow detection

In this research, we continue our earlier work on a ResUNet
neural network model for contrail detection [5], and adapt it
for detecting both contrails and shadows with the manually
labelled data. The open-source model from [5] has previously
proven to be highly effective in handling varied image quality,
including contrast, distortions, and lighting conditions. The
customized SR Loss function is also effective in identifying
the linear feature line contrails and shadows.

The ResUNet model used in this study combines the U-
Net and ResNet architecture. A U-Net is a convolutional
neural network, that includes encoder and decoder paths. The
encoder captures the input image’s features by progressively
reducing dimensions and increasing depth. The decoder uses

up-sampling with transposed convolutions for pixel-wise seg-
mentation, restoring the spatial resolution.

U-Net is commonly incorporated with ResNet, a type of
network designed to address the challenge of the diminishing
gradients in neural network training. When combined, the
mode contains U-Net with ResNet encoder (ResUNet), where
the ResNet acts as the backbone for feature extraction, and
U-Net acts as the decoder for segmentation. The model detail
can be found in [5].

To train the models, 55 images were selected from locations
around the world and manually labeled for contrails and their
shadows. Once the Landsat data has been labeled, the pre-
trained U-Net segmentation model is applied.

The model is trained on 34 labeled images, and 21 used for
validation. Splitting the data in training and testing was done
so that both groups included a variation in contrail interplay
(from parallel to crossing tracks). It was also ensured that all
validation images had OpenSky coverage.

Traditionally, 34 images is a relatively small data set to use
in neural network training. However, image augmentation [13]
is applied at each training step to a random selected batch of
images. This allows the model to become more generalized
from only a limited number of manually labeled images [5].

Before inputting the satellite images into the network model,
we normalized each individual band image. Contrail and
shadow detection were trained separately.

One of the main ground features that can confuse the neural
network model is rivers. The QA band from Landsat can be
used to identify areas of water. In the pre-processing of the
input imagery, we replace the pixel values in these areas with
values from the background. Fortunately, roads, power lines
and other dark man-made linear features were typically too
thin to be mistaken for shadows or contrails.

IV. ANALYSIS & RESULTS

The methodology presented in the previous section will be
evaluated against aircraft GPS’s altitude here. First, however,
the results of the coupling of the contrail and shadow pairs
are shown.

A. Calculated Altitudes

Based on this methodology, we computed the ‘calculated
altitude’ values presented in Table II. Subsequently, we asso-
ciated the contrails with OpenSky trajectories, obtaining the
ICAO24 codes and geoaltitudes. Pair 3 from Fig. 5 is not
considered because the OpenSky counterpart could not be
established with sufficient certainty.

TABLE II: SHADOW ALTITUDE COMPARED WITH OPENSKY

Pair
number

Aircraft
icao24

Calculated
altitude

Aircraft GPS
altitude

0 ab4e94 12.446 12.137
1 a213bd 9.979 10.043
2 a448f8 10.003 10.356
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Figure 5. Hough Transform, the first image shows the labelled contrail (red) and shadow (blue) lines, the second the detected Hough lines, in the third image
each of these lines in the coordinate space is represented by a point in the parameter space. The numbers near each point indicate the pair formed.

Table II, shows the results for a single set of Landsat images,
this methodology was subsequently repeated for all 55 images
sets. All of these differences between the calculated altitudes
and aircraft GPS altitude pairs (as shown in Table II) are
presented in the top histogram in Figure 6. These altitude
differences exhibit a normal distribution centred around zero.

In the lower histogram in Figure 6, we see the relative
altitude difference as compared with OpenSky data, which
shows a range of maximum 7% for an average aircraft GPS
altitude of 11.263 meters and average calculated altitude of
11.433 meters over 44 flights.

Figure 6. Histogram of altitude differences between aircraft GPS altitude and
the calculated altitude based on shadow distances for all 44 flights considered.
The top histogram shows the altitude difference, while the bottom shows the
relative altitude difference with the aircraft GPS altitude.

As expected, outliers occur when significant elevation differ-
ences occur in the terrain. Another reason for the outliers are
large differences between the theta’s of pairs. In the Hough
space, this implies that the lines in a pair might be near,
but their angles are different. Visual inspections of the large
difference cases confirmed the contrail-shadow pairs were
correct, but in many cases, the shadow starts parallel to the
contrail and then bends away or towards it.

This most likely implies a climbing or descending aircraft,
and so causes an error both in the aircraft GPS altitude and
the calculated altitude. For this reason, pairs where the theta
difference was larger than 2 were also eliminated from the
histogram in Figure 6.

B. Contrails and shadows detection from neural networks
To assess the efficiency of detecting contrails and shadows

based on our previously proposed ResUNet neural network
models, the performance is evaluated based on images unused
in training. The neural network model is trained with 4000
steps (around 1500 epochs).

Figure 7 shows a few examples of how the contrail detection
model performs on images from in the testing set. The
first column shows the image used for testing the ResUNet,
the second column displays manually labeled contrails and
shadows, and the third column reveals the contrail predictions
generated by the ResUNet. We can observe a high accuracy
for contrail detection model.

The shadow detection is not as accurate as the contrail
detection. This model is trained for 9000 steps (around 3000
epochs). Figure 8 shows a few examples to illustrate the
performance of shadow detection ResUNet, where it becomes
apparent that the main challenge is the ground features.

The model has difficulties to distinguish between linear
ground features and shadows. It only performs well when
backgrounds are relatively uniform, as shown in the first two
plots. However, in the third plot, the dark ground features are
identified as shadows.
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Figure 7. Application of the contrail detection ResUNet model with unseen
Landsat images, next to the labelled contrail images and the results of the
ResUNet.

Figure 8. Application of the shadow detection ResUNet model with unseen
Landsat images, next to the labelled shadow images and the results of the
ResUNet. The last image shows the model in the case where there is no
shadow present.

It is worth noting that the performance of contrail and
shadow model during the trainings are also different. In Figure
9, we show the intersection over union (IoU), a common
metric to evaluate object detection performance, during the
two training processes. The top and bottom plots show the IoU
improvement for training and validation datasets, respectively.

It can be observed that the contrail model learns quickly,

and reaches a much higher accuracy than the shadow model.
The shadow model has a very shallow learning curve with
much lower accuracy.

However, based on the trends from both curves, we think
improvement could still be made with more epochs. We
suspect that the model for shadow detection may require a
significantly longer training with the ResUNet model. A model
with more parameters or a different neural net model archi-
tecture shall also be tested to improve the shadow detection
model. In the follow-up research, our aim is to achieve a
similar level of performance as the contrail detection.

Figure 9. Training and validation errors during training and validating for both
the contrail and shadow detection model. The contrail model learns quickly,
and reaches a much higher accuracy than the shadow model.

V. DISCUSSION

A. Required Accuracy

The reason behind determining contrail formation altitudes
is the creation of a climate-optimized routing system based on
atmospheric conditions. This entails linking contrail formation
altitudes and atmospheric datasets, such as ECMWF’s (Eu-
ropean Centre for Medium-Range Weather Forecasts) ERA5
Atmospheric Reanalysis [6], [14], or NOAA’s (United States
National Oceanic and Atmospheric Administration) Rapid
Updated Cycle [15], [16].

Both of these datasets are supplied on 37 pressure levels
from 1000 hPa to 1 hPa, with a typical step size of 25 hPa. This
resolution is around 800 m (2625 feet), which is well within
the typical error of the altitude differences presented in Figure
6, and so our methodology provides an altitude estimation that
falls within the required accuracy for contrail avoidance.

In this paper, the geoaltitude from OpenSky ADS-B is taken
as a ground truth, as the benchmark to measure the shadow
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determined altitude against. This has proven to be an accurate
methodology of determining flight levels [17].

B. Landsat Scenes

The methodology presented in this paper focuses on flat
terrain, because correcting for shadow distortions caused by
topography effects was considered beyond the scope of this
study. However, extensive research is available on how to
incorporate digital elevation models into the prediction from
volcanic research [8], [18].

Besides the bands shown in Table I, a QA pixel file is
also included with the Landsat data. This mask layer identifies
pixels that are likely covered by clouds, shadows or contain
water. This mask is based on the object-based Fmask [19].
While the mask does include prediction for both clouds and
shadows, we have observed that in many cases the contrails
and their shadows are probably too thin to be predicted by the
Fmask.

While the assignment of flight trajectories to individual
contrails, as demonstrated in previous studies [5], [6], presents
challenges, the advantage is that the aircraft-type is acquired.
This will ultimately be necessary to obtain when the climate
optimal route is determined, since the aircraft engine and the
flight level limitations should be considered [20].

C. Improvements to ResUNet

Questions about required accuracy also arise when dis-
cussing the ResUNet, where 100% detection is not necessary.
The caveat being that contrails and shadow pairs being missed,
do not exhibit any bias. The purpose of the ResUNet is
to create an inventory of contrail forming conditions, not
necessarily to detect every possible contrail-shadow pair.

Nevertheless, improvements can and arguably should still be
made based on Figure 9, especially for the shadow detection,
where the IOU graph plateaus around 17%. To achieve these
improvements, change detection in the time series of satellite
images [21] could be used. First, a cloud-free image with the
same spatial coverage, which was gathered around a similar
time as the original image, is downloaded, and subsequently
this cloud-free image is subtracted from the contrail image.
The difference between these images should highlight shadows
in Band 7 and the contrails in Band 9. Training the model on
these images, instead of the regular ones, could improve the
contrail and shadow detection.

Additionally, both older and younger contrails were labelled
in this work. In some cases, the contrails were so young
that the aircraft was still visible in the Landsat image. Young
contrails often remain clearly visible in RGB true-color images
and Band 11, but their shadows may not exhibit the necessary
contrast for accurate detection in Band 7. As contrails age,
they become more diffuse and spread out horizontally. This
makes detecting the contrails and their shadows easier, but
care should be taken to label them correctly in the centre of
the contrail, otherwise the methodology illustrated in Figure 2
will fail.

Another consideration for only labelling younger contrails
is that there is more assurance that the altitude calculated
is the contrail formation altitude. This can be different from
the contrail presence altitude, because there has been little
time to vertically displace the contrail, because of a dynamic
atmosphere.

Because of the limited temporal resolution of Landsat
imagery (revisit time of 16 days) determining the persistence
of the detected contrails is a challenge. As the persistence of
contrails is an important climate metric, this could be mitigated
by incorporating geo-stationary satellite imagery (as in [6]),
once the contrail has been detected and the altitude has been
calculated.

Future work will involve further improvements to the
ResUNet model as described above, as well as incorporat-
ing ECMWF ERA-5 Reanalysis data (and potentially IGRA
weather balloon data) to construct a contrail forming atmo-
spheric conditions model. This model could then act similarly
to a weather forecast, with the ATC planning of the route.

VI. CONCLUSION

This study introduces a novel method for determining
contrail altitudes from their shadows using only the Landsat
imagery. The methodology outlined in this study accomplishes
a pivotal milestone by accurately determining contrail forma-
tion altitudes. It provides contrail altitudes with an accuracy
suitable for integration into climate-optimized flight planning
systems. This paves the way for practical contrail avoidance
measures that can be employed in flight operations, contribut-
ing to the overall reduction in aviation’s climate impact.

A neural network segmentation model is also presented,
which allows for the automatic detection of contrail and their
corresponding shadows. With further enhancement, this model
can be used to produce a consistent contrail dataset useful for
validating existing and future contrail models. It also expands
the scope of machine learning applications in contrail detection
and environmental monitoring via satellite imagery.

Overall, the contributions of this study not only fill a current
gap in contrail research but also set the stage for future
innovations in the field of contrail assessment.

VII. SOURCE CODE AND ADDITIONAL RESULTS

The source code and data are available at:
https://github.com/junzis/contrail-net.
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