
Noise Resilient Compilation Policies for
Quantum Approximate Optimization Algorithm

Invited Talk

Mahabubul Alam†, Abdullah Ash-Saki†, Junde Li†, Anupam Chattopadhyay∗, Swaroop Ghosh†
†School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA, USA

∗School of Computer Science and Engineering, Nanyang Technological University, Singapore
{mxa890,axs1251,jul1512}@psu.edu,anupam@ntu.edu.sg,szg212@psu.edu

ABSTRACT

Quantum approximate optimization algorithm (QAOA) is a promis-

ing quantum-classical hybrid algorithm to solve hard combinatorial

optimization problems using noisy quantum devices. The multi-

qubit CPHASE gates used in the quantum circuit for QAOA are

commutative i.e., the order of the gates can be altered without

changing the output state. This re-ordering leads to the execution

of more gates in parallel and a smaller number of additional SWAP

gates to compile the QAOA circuit resulting in lower circuit-depth

and gate-count. A less number of gates generally indicates a lower

accumulation of gate-errors, and a reduced circuit-depth means

less decoherence time for the qubits. However, near-term quan-

tum devices exhibit significant variations in the gate success prob-

abilities. Variation-aware compilation policies (i.e. putting most

gate operations on qubits with higher gate success probabilities)

can enhance the probability of successful program execution on

the hardware. The greater flexibility of QAOA-circuits offer better

scope of optimization with QAOA-tailored compilation policies.

This paper presents an argument for compilation policies to ex-

ploit the unique characteristics of QAOA-circuits alongside the

variation-awareness of the noisy devices. We present two proce-

dures - variation-aware qubit placement (VQP) and variation-aware

iterative mapping (VIM) that can improve the circuit success prob-

ability quite significantly (≈8.408X on average) for a set of QAOA-

MaxCut problems on ibmq_16_melbourne.

ACM Reference Format:

Mahabubul Alam†, AbdullahAsh-Saki†, Junde Li†, AnupamChattopadhyay∗,

Swaroop Ghosh†. 2020. Noise Resilient Compilation Policies for Quan-

tum Approximate Optimization Algorithm: Invited Talk. In IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD ’20), Novem-

ber 2–5, 2020, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3400302.3415745

1 INTRODUCTION

Quantum computing is getting traction with the newly demon-

strated quantum supremacy by Google [6]. Prototypical quantum

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415745

computers with 5-128 qubits are available or proposed [20–22, 29] in

the past few years from industry vendors like IBM, Google, Rigetti,

etc. However, the interest in quantum computing can wane and

the progress can halt without a quantum application of signifi-

cant economic potential in the near-term [28]. Quantum Approx-

imate Optimization Algorithm (QAOA) [15–17] has been touted

as a prime candidate for early demonstration of quantum advan-

tage [18]. It is particularly useful to solve NP-hard combinato-

rial optimization problems using noisy quantum devices without

error-correction [2, 11, 36]. However, the perceived quantum ad-

vantage through QAOA may be lost due to the accumulation of

gate errors and decoherence [4]. An optimized circuit in terms of

gate-count/depth/success probability can show greater resilience

to noise, and enhance the probability of generating the correct

quantum state [7, 9, 25, 32]. This makes QAOA circuit optimization

an important problem in the NISQ era [28].

The detailed theoretic discussion on QAOA can be found in other

literature [11, 15–18, 36]. QAOA involves parameter optimization

of a multi-level parameterized quantum circuit (PQC) that runs

in a quantum-classical hybrid optimization loop to minimize (or

maximize) the expectation value of a classical cost function. QAOA

performance improves with added levels in the PQC. The total

number of levels is referred to as ‘p’. However, each level adds

additional two parameters (𝛾, 𝛽) to the PQC which may affect the

convergence and the speed of the algorithm [2, 36].

The PQC to solve the maximum cut (MaxCut) problem of a 4-

node 3-regular graph (Figure 1(a)) with QAOA is shown in Figure

1(b) (‘p’ = 1). Note that, the PQC has an associated CPHASE opera-

tion in every level of the circuit for every edge in the problem graph

for the MaxCut problem [8, 34]. CPHASE is a two-qubit unitary

parametric quantum gate operating between a control and a target

qubit. Also, note that two consecutive gates can be executed con-

currently if they operate on a different set of qubits. For example,

the first two CPHASE operations in the circuit in Figure 1(b) can

not be executed concurrently as they share a logical qubit (q2).

The CPHASE operation in a QAOA circuit are commutative [11, 34]

i.e., the order of these CPHASE gates can be interchanged without

affecting the output state of the quantum circuit. We can use this

knowledge to maximize concurrent gate operations by choosing an

optimal order of the gates. Figure 1(b) shows the QAOA-MaxCut

circuit instance with randomly ordered CPHASE operations for

the problem graph in Figure 1(a) (circ-1). Figure 1(c) shows a gate

re-ordered circuit (circ-2). Note that, if these circuits are executed

RX()q1

q2

H

H

H

H

q3

q4

RX()
RX()
RX()

Layer-1 Layer-2 Layer-3
QAOA-MaxCut circuit for the problem graph: Intelligent Approachc
Circ-2

1

3

4

2

Problem grapha

d

Linearly coupled
4-qubit hardware

and initial mapping

p1

p2

p3

p4

q1

q2

q4

q3

Mapping circ-2 with layer orders: layer-1|layer-2|layer-3

RX()p1

p2

H

H

H

H

p3

p4

RX()
RX()
RX()

q2

q3

q1

q4

q3

q1

q2

q4

q1

q2

q3

q4

RX()p1

p2

H

H

H

H

p3

p4

RX()
RX()
RX()

q1

q3

q2

q4

q1

q4

q3

q2

q1

q2

q3

q4

Mapping circ-2 with layer orders: layer-1|layer-3|layer-2

RZ(/2)

CPHASE

CNOT
decomposition

RX()q1

q2

H

H

H

H

q3

q4

RX()
RX()
RX()

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6
QAOA-MaxCut circuit for the problem graph: Random Approachb

Circ-1

Figure 1: (a) A 4-node 3-Regular graph, (b) a randomly constructed QAOA-MaxCut instance (circ-1) of the 4-node graphwith p =

1, (c) an optimized circuit (circ-2) for the problemwith reduced number of layers, (d) SWAP addition during circuit compilation

for a target hardware with different layer orders.

in quantum hardware with full qubit-to-qubit connectivity sup-

porting the following basis gates: H, RX, and CPHASE, circ-1 will

require 9 time steps while circ-2 will take 6 time steps (including

the measurement operations). Therefore, circ-2 will be 50% faster

and will experience less decoherence. Re-ordering these layers of

CPHASE gates (e.g. interchanging layer-2 and layer-3 in circ-2) will

not reduce the circuit cumulative execution time.

However, if we consider target hardware with limited connec-

tivity such as the 4 linearly coupled physical qubits (p1, p2, p3,

p4) in Figure 1(d), there will be further scope of optimization in

circ-2. For such architectures, SWAP gates are added between two

layers to meet the hardware constraints [12, 37]. For the initial

logical-to-physical qubit assignment (choice of hardware qubits to

execute the quantum program) shown in Figure 1(d), interchanging

the CPHASE layer 2 and 3 (in circ-2) will reduce the additional

SWAP operations from 4 to 3. Therefore, the CPHASE gates that

are picked for different layers will affect the quality of the compiled

circuit for such target architectures.

The work in [5, 34] utilized these flexibilities in QAOA-circuits

to compile quantum circuits with reduced gate-count and depth. In

[34], the authors formulated the QAOA-circuit compilation problem

as a planning problem and used off-the-shelf temporal planners for

compilation with an objective to minimize the circuit makespan or

depth. The work in [5] proposed two sub-routines namelymin-layer

formation and iterative compilation that re-compiles the QAOA-

circuit with re-ordered gates to generate a circuit with reduced

gate-count or depth. The iterative compilation procedure is guided

by a branch and bound optimization heuristic [23]. However, none

of these works did take qubit-to-qubit variability into consideration

which can have significant impact on the probability of successful

execution of the program on the hardware [1, 32]. Additionally, they

did not consider optimization of the initial logical-to-physical qubit

placement which can also influence the quality of the compiled

circuits [3].

To elucidate on the fact, let us consider a hypothetical scenario

where the CNOT gate success probabilities between physical qubit

pairs p1-p2, p2-p3, and p3-p4 in Figure 1(d) are 0.98, 0.96, and 0.92

respectively. A SWAP gate can be decomposed to three consec-

utive CNOT operations [37] and every CPHASE operation can

be implemented with two CNOT operations [11]. The success

probabilities of circ-2 with layer-1|layer-2|layer-3 and circ-2 with

layer-1|layer-3|layer-2 become 0.9812 ∗ 0.966 ∗ 0.926 or 0.3724 and
0.986 ∗ 0.966 ∗ 0.929 or 0.3274 respectively (considering no error in

single-qubit operations). Note that, despite having larger number of

gates, circ-2 with layer-1|layer-2|layer-3 can be executed more reli-

ably than circ-2 with layer-1|layer-3|layer-2. A different initial qubit

mapping for circ-2 with layer-1|layer-3|layer-2 (q1→p4, q2→p3,

q3→p2, q4→p1) can increase the probability to 0.989 ∗ 0.966 ∗ 0.926

or 0.3957. Therefore, in the NISQ-era where the available quan-

tum devices are plagued with various noise sources, it is more

appropriate to enhance the circuit reliability through qubit-to-qubit

variation-aware compilation policies rather than blindly minimiz-

ing circuit cumulative gate-count or depth [7, 25, 32].

In this article, we make the following contributions: we, (i) de-

velop variation-aware compilation policies that are tailored for

QAOA-circuits to exploit its unique characteristics, (ii) present

a variation-aware qubit placement procedure (VQP) for QAOA-

circuits, and, (iii) present a branch and bound optimization heuristic

to enhance QAOA-circuit successful execution probability through

a variation-aware iterative mapping (VIM) procedure.

2 QUANTUM COMPUTING PRELIMINARIES

Qubits and Quantum gates: Qubit is analogous to classical bits

however, a qubit can be in a superposition state i.e., a combination

of 0 and 1 at the same time. Quantum gates such as single qubit (e.g.,

Pauli-X (𝜎𝑥) gate) or multiple qubit (e.g., 2-qubit CNOT gate) gates

modulate the state of qubits and thus perform computations. In

superconducting transmon qubits, any gate operation is executed

in the actual hardware using pre-compiled microwave pulses [8].

Gate Error, Decoherence and Crosstalk: Quantum gates are

error-prone. Besides, the qubits suffer from decoherence i.e., the

qubits spontaneously interact with the environment and lose states.

Therefore, the output of a quantum circuit can be erroneous. The

deeper quantum circuit needsmore time to execute and gets affected

more by decoherence. More gates in the circuit also increase the

accumulation of gate errors. Thus, lower depth and number of gates

in the circuit improves noise resiliency. Parallel gate operations

on different qubits can reduce the circuit execution time. How-

ever, such operations may affect each others performance which is

referred to as crosstalk [27].

Success Probability: The success probability of a gate is the con-

jugate of the error-rate (1 − 𝑒𝑟𝑟𝑜𝑟). The success probability of a

circuit (referred to as circuit-success-probability or CSP throughout

this paper) is defined as the product of the success probabilities of

individual gates [32].

Basis Gates and Coupling Constraints: A practical quantum

computer supports a limited number of single and multi-qubit gates

known as basis (or native) gates of the hardware. IBM quantum

computers offer single-qubit {U1, U2, U3, ID} and two-qubit CNOT

gate as basis gates. However, the quantum circuit may contain

non-native gates to the target hardware e.g., the CPHASE gate that

need to be decomposed into the basis gates before execution [31].

A CNOT decomposition of a CPHASE gate is shown in Figure 1(d).

The native two-qubit gate may or may not be permitted between

all the two-qubit pairs in the target hardware. These limitations are

also known as coupling constraints. Conventional compilers add

necessary SWAP gates to meet these constraints [26, 35, 37].

3 PROPOSED METHODOLOGIES

We present two noise resilient compilation policies - VQP and VIM

- which can be incorporated in any conventional quantum circuit

compiler to improve the noise resilience of QAOA-circuits. VQP is

an intelligent qubit allocation and initial mapping approach which

applies to any circuit compilation. VIM manipulates the flexibility

of QAOA-circuits to improve circuit noise resilience using any

standard backend quantum circuit compiler (i.e. Qiskit [12]). The

workflow to incorporate VQP and VIM in QAOA-circuit compilation

is shown in Figure 2. Starting with a QAOA problem instance,

target hardware coupling graph and hardware calibration data, VQP

generates an initial logical-to-physical qubit mapping that is passed

to VIM which in turn, uses a backend compiler to generate the

hardware compliant circuit. The details of the individual procedures

are discussed in this section.

3.1 Variation-aware Qubit Placement (VQP)

Variation-awareness in qubit placement can improve circuit noise

resilience [10, 25, 32]. Qiskit uses a heuristic called greedyE★ [25]

where program CNOTs, and their control and target qubits are

VQP
QAOA

Program

Coupling
graph

Backend
compiler

VIM Hardware
compliant

circuit

Hardware
calibration

data

Initial
mapping

Mapped
circuit

New
layer
order

Figure 2: A generic workflow incorporating the proposed

compilation methodologies on top of a traditional compiler

backend.

placed in a heaviest edge first order (maximum CNOT operations

between two logical qubits). Note that, each qubit may interact

with another qubit only once within a level (either 1 CPHASE

or no CPHASE) in QAOA circuits. The number of CNOT opera-

tions between any two-interacting qubits is a constant. Therefore,

GreedyE★ which prioritizes qubit pair placements with maximum

interactions may not offer much performance benefits for QAOA.

Qubit placement procedure for QAOA circuits should consider,

(i) placing logical qubits with higher number of CPHASE operations

to the physical qubits with higher density of reliable two-qubit links

(considering two-qubit gate errors as the dominating error source

in the NISQ devices [32]) so that more operations can be executed

with higher reliability, and (ii) minimizing initial placement dis-

tances (distance is the shortest path length between two hardware

qubits in the coupling graph) between the logically neighboring

qubits (program qubits that interact with each other) so that the

need for qubit movement through SWAP insertion is reduced. The

proposed variation-aware qubit placement (VQP) aims to achieve

these two objectives. VQP utilizes a hardware and a program pro-

filing statistics. We first discuss the profiling methods and later, we

discuss the steps in the VQP procedure.

Hardware Profiling: Hardware profiling is done based on the

connectivity strength of the physical qubits [32]. A physical qubit

connectivity strength is defined as the summation of the success

rate of all the two-qubit links with its neighbors. The success rate

of all the CNOT links in ibmq_16_melbourne after calibration on a

certain day is shown in Figure 3(a). The qubit connectivity strengths

are shown in Figure 3(b). For example, qubit-0 has two CNOT links

with success rates of 0.976 and 0.95242. Therefore, the connectivity

strength of qubit-0 is 1.92842.

Program Profiling: The program profile used in VQP is similar

to the one used in [25]. For any input QAOA-circuit, we calculate

the number of CPHASE operations per logical qubit to create the

program profile. A demonstrative example is shown in Figure 3(c).

VQP Procedure: Starting with the list of CPHASE operations in

a QAOA-circuit, target hardware, and program profiling statistics,

VQP adopts following steps:

Step-1: The logical qubits are sorted (descending order) in a list

based on the number of CPHASE operations per qubit. Physical

qubits are allocated to the logical qubits in this order.

Step-2: The first logical qubit is assigned to the physical qubit

with the highest connectivity strength. After the assignment, the

qubit is removed from the list.

Step-3: For the next logical qubit in the list, we check if any of its

logical neighbors has been already placed. If none of them has been

placed, we pick the unallocated physical qubit with the highest

connectivity strength for allocation. If some of its logical neighbors

are placed, we find the unallocated physical neighbors of these

placed qubits. We pick a qubit from these neighbors maximizing the

cost metric - qubit connectivity strength/cumulative distance from

the placed neighbors. Distances between physical qubits can be

measured once (using Floyd-Warshall algorithm [24]) and accessed

from memory during VQP. After the assignment, we remove the

logical qubit from the list.

Step-4: We repeat Step–3 until the list is empty.

Example 1: The VQP procedure for the QAOA-circuit in Fig-

ure 3(c) is shown in Figure 3(d) and (e)-(j). Logical qubit ‘q0’ is

Figure 3: (a) Coupling graph of a 15-qubit quantum computer from IBM (ibmq_16_melbourne), (b) connectivity strength met-

rics of different qubits in ibmq_16_melbourne, (c) a toy QAOA cost Hamiltonian circuit with qubit activity profiles, (d) VQP

decision metric, and (e)-(j) qubit allocation and initial mapping for the toy example on using VQP.

placed to hardware qubit-2 as it has the highest qubit connectivity

strength of 2.9339 (Figure 3(e)). Logical qubit ‘q1’ has 3 possible

candidates (as it is a logical neighbor of ‘q0’), all at a distance of 1

from ‘q0’ (Figure 3(f)). Physical qubit-3 has the highest connectiv-

ity strength/cumulative distance from the placed neighbors (‘q0’).

Therefore, qubit-3 is chosen for ‘q1’. The other qubits ‘q4’,‘q2’,‘q3’

are placed to qubit-4, qubit-11, and qubit-12 respectively.

3.2 Variation-aware Iterative Mapping (VIM)

VIM follows an iterative compilation procedure similar to the work

in [5] . It utilizes a backend compiler to compile the circuit with

re-ordered gates. However, instead of trying to minimize the depth

or cumulative gate-count of the compiled circuit as presented in

[5], VIM tries to maximize the circuit success probability (CSP).

VIM has a pre-processing step (Instruction Parallelization) to

parallelize the CPHASE operations of any given QAOA-circuit.

Previously, similar pre-processing step was presented in [5]. The

work in [5] formulated the problem as an instance of a bin-packing

problem and used the first-fit heuristic to find the solution [14]. In

this work, we replace the first-fit heuristic with first-fit decreasing

heuristic as it generally provides more effective solutions [13]. The

details of the procedures are discussed below.

InstructionParallelization:The logical qubits in the givenQAOA-

circuit are sorted based on the number of CPHASE operations that

involves a certain qubit (decreasing order). Next, a sorted list of

CPHASE operations is created by putting the CPHASE operations

involving the highest ranked qubit first order. The rest of the pro-

cedure is identical to the layer-formation routine presented in [5].

Example-2: A demonstrative example is shown in Figure 4. The

example problem QAOA instance has 6 CPHASE gates between the

logical qubit pairs {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. Here, all the

logical qubits are involved in exactly the same number of CPHASE

operations (3 each). Such a tie can be broken by random selection.

In this toy example, we sort the logical qubits in the following order:

{1, 2, 3, 4}. Next, we place the CPHASE operations involving qubit 1

first. Then, we place the remaining operations involving qubit 2, 3,

and 4 - in that order. A total of 3-layers are constructed through the

procedure (Figure 4(b)). Each iteration in the procedure is shown

in Figure 4(a). The constructed circuit after the layer formation

procedure is shown in Figure 1(c). A randomly generated circuit

for the same problem required 6 layers (Figure 1(b)).

Note that, the minimum number of layers where we can fit all

the CPHASE operations is the highest number of CPHASE opera-

tions involving a logical qubit (3 in the toy example). The first-fit

decreasing heuristic does not guarantee the optimal solution.

VIM Procedure: VIM starts with the layer-order produced during

the pre-processing step (we call it the root order) and update the

order iteratively. In each iteration, VIM considers exchanging the

order of two-layers at a time for a given QAOA circuit instance. Each

of these exchanges will produce a distinct order of the layers. For a

given problemwith ‘n’ layers, we will have ‘n(n-1)/2’ possibilities to

explore in each iteration which is far smaller than ‘n!’ (total number

of possible layer orders) for larger values of ‘n’. VIM compiles the

circuit for these layer orders in the current iteration and picks the

order that provides the best improvement in CSP. We set the picked

order as the new root order and move to the next iteration. We

terminate the procedure until there is no further improvement in

CSP between consecutive iterations.

Example-3: An example of the VIM procedure is shown in Figure

5. Starting with a hypothetical QAOA instance with 4 CPHASE

layers (L1‖L2‖L3‖L4), we compile the circuit and find the CSP to

be 0.80. In the current iteration, we consider all possible two-layer

interchanges (a total of 6) and compile the circuit for the generated

layer orders. Interchanging L1 with L4 results in a maximum im-

provement in CSP i.e., increased to 0.84 from 0.8. Hence, we pick

this layer order as the root for the next iteration. In iteration-2,

none of the layer orders produced by the two-layer interchange

approach gives any gain. Hence, the procedure terminates.

4 EVALUATION OF THE PROPOSED
METHODOLOGIES

In this section, we first discuss the metrics and framework that is

used for performance evaluation. Later, we present the comparative

results and discuss the pros and cons of the proposed solutions.

Evaluation Metrics:We use circuit depth, cumulative gate-count,

compilation time, and circuit success probability (CSP) metrics to

compare various compilation strategies [5, 24, 37]. A lower depth

and gate-count can be helpful to mitigate the impact of decoherence

and gate-errors. Compilation time is the time taken by the compiler

Layer-1

1 2 3 4

(1, 2), (3, 4)

Layer-2

1 2 3 4

(1, 3), (2, 4)

Layer-3

1 2 3 4

(1, 4), (2, 3)

Constructed layer configurations
for the given problem

(a) (b)

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

Layer-1

1 2 3 4

{(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

Layer-1

1 2 3 4

(1, 2)

X X X X

Layer-1 Formation

{(1, 3), (1, 4), (2, 3), (2, 4)}

Layer-2

1 2 3 4

{(1, 4), (2, 3), (2, 4)}

Layer-2

1 2 3 4

(1, 3)

X X

Layer-2 Formation

{(1, 4), (2, 3)}

Layer-3

1 2 3 4

{(2, 3)}

Layer-3

1 2 3 4

(1, 4)

Layer-3 Formation

Stop

Figure 4: (a) The intermediate steps of the proposed layer formation procedure for an example problem (a pair (1,2) denotes a

required CPHASE operation between qubit-1 and 2 for the given QAOA problem instance), (b) the constructed layers.

L1 L2 L3 L4

CSP = 0.8

L2 L1 L3 L4

CSP = 0.82

L3 L2 L1 L4

CSP = 0.71

L4 L2 L3 L1

CSP = 0.84

L1 L3 L2 L4

CSP = 0.66

L1 L4 L3 L2

CSP = 0.75

L1 L2 L4 L3

CSP = 0.58

L2 L4 L3 L1

CSP = 0.81

L3 L2 L4 L1

CSP = 0.77

L1 L2 L3 L4

CSP = 0.8

L4 L3 L2 L1

CSP = 0.82

L4 L1 L3 L2

CSP = 0.56

L4 L2 L1 L3

CSP = 0.61

L1 L2 L1 L3 L1 L4 L2 L3 L2 L4 L3 L4

L4 L2 L4 L3 L4 L1 L2 L3 L2 L1 L3 L1

X X X X X

X X X X X X

Starting with a layer order (L1|L2|L3|L4),
the procedure runs for two iteration
minimizing the critical depth by 28.

Total number of compilation: i*n*(n-1)/2
i = number of iteration
n = number of layers

root: iter-1

root: iter-2

Redundant
Compilation

Figure 5: Hypothetical iteration steps of a VIM procedure tomaximize the circuit success probability (CSP) of a QAOA-MaxCut

circuit instance with 4 layers of CPHASE operations.

to generate the hardware compliant circuit. A faster compilation is

desired for scalability. The CSP metric is useful to quantify perfor-

mance benefits with variation-aware compilation policies [32].

Compiler Backend, Target Hardware, and Problem Sets: We

use Qiskit as the backend circuit compiler (run on an Intel Core i-7

processor at 3.41 GHz frequency). We use a Python-based imple-

mentation of VQP and VIM procedures which has been integrated

with the Qiskit backend. We choose 15-qubit ibmq_16_melbourne

as the target hardware. Randomly chosen 15-nodes erdos-renyi

random graphs (with varied edge probabilities) are used for the

validation purpose inspired from recent works on QAOA [11, 36].

An edge probability of 0.5 means an edge between any two nodes

in the graph is 50% likely to be included in a random sample. The

edge probabilities are varied between 0.3, 0.4, 0.5, 0.6 and 0.7. We

randomly generated 40 graph instances with each of these edge

probabilities. A total of 200 graph MaxCut problems have been

used for the evaluation purpose. Graphs with higher edge proba-

bilities are dense graphs that require many CPHASE gates in their

corresponding QAOA-MaxCut circuits. All the QAOA-circuits are

compiled with the minimum QAOA-level (𝑝 = 1).

VQP vs. GreedyE★: To compare VQP with GreedyE★, we have

compiled a set of QAOA-MaxCut circuits for erdos-renyi random

graphswith these two initial placementmethodswhere the CPHASE

gate sequence is chosen randomly for each of the QAOA-circuit

instances. The mean circuit cumulative gate-count, depth, and CSP

ratios between VQP and GreedyE★ for different edge probabilities

are shown in Figure 6(a), (b), and (c) respectively.

Note that, the mean value of circuit gate-count and depth ratios

- both were found to be higher for VQP compared to GreedyE★ as

evident from Figure 6(a), and (b). VQP produced circuits with 5.69%

larger depth and 8.85% larger gate-count compared to GreedyE★.

However, VQP generated circuits with significantly higher CSP

compared to GreedyE★ as evident from Figure 6(c). On average,

VQP generated circuits with 2.38X larger CSP than GreedyE★. The

performance improvement was less pronounced for sparser graphs.

For instance, for the problems with 0.3 and 0.4 edge probabilities,

VQP was found to be 1.575X better. For denser graphs (i.e. edge

probabilities of 0.5 and 0.6), VQP was 3.585X better. However, for

even denser graphs (i.e. edge probability of 0.7), the improvement

was smaller (1.58X). The reason is the higher number of logical

neighbors of a logical qubit for dense graphs than the number of

physical neighbors of any hardware qubit. For any qubit placement,

some of the logical neighbors will remain far from a logical qubit

placed in a physical qubit. Therefore, we do not note large perfor-

mance improvement with VQP. Note that, VQP incurred a small

(≈16.52%) compilation time penalty over the GreedyE★ heuristic

for the 200 chosen MaxCut instances.

VIM+VQP vs. GreedyE★: Later, we compare the performance be-

tween VIM+VQP with the GreedyE★ heuristic (+random CPHASE

sequence). The mean compiled circuit gate-count, depth, and CSP

ratios between these two approaches are shown in Figure 7(a), (b),

and (c) respectively. The mean cumulative gate-count was found

to be quite similar. The average value of the gate-count ratio was

found to be 0.999 for all 200 graphs. The value remained close to ≈1

for different edge probabilities (Figure 7(a)). VIM+VQP performed

better than GreedyE★ for sparse graphs and worse for dense graphs.

The depth was found to be significantly smaller in VIM+VQP

(≈20.38% on average). Note that, the pre-processing step used in

VIM+VQP increased parallel gate operation which is reflected in

the circuit depth.

16.52%

c

d

ba

Figure 6: The ratio between mean compiled circuit (a) gate-count, (b) depth, (c) circuit success probability, and (d) compilation

time of the proposed VQP and GreedyE★ (+random CPHASE sequence) with qiskit compiler backend for a set of erdos-renyi

random graphs with varying edge probabilities (40 random instances of 15-node QAOA-MaxCut circuits used for each bars).

a

b

c d

Figure 7: The ratio between mean compiled circuit (a) gate-count, (b) depth, (c) circuit success probability, and (d) compilation

time of the proposed VIM+VQP and GreedyE★ (+random CPHASE sequence) methods with qiskit compiler backend for a set

of erdos-renyi random graphs (40 random instances of 15-node QAOA-MaxCut circuits used for each bars).

The major benefit is observed in CSP. VIM+VQP generated cir-

cuits with 8.408X CSP compared to GreedyE★. The performance

improvement was more pronounced for denser graphs as evident

from Figure 7(c). For instance, VIM+VQP generated circuits with

4.41X higher CSP with edge probabilities 0.3 and 0.4 on average.

For even higher edge probabilities, the CSP was 11.07X higher.

However, the benefits in CSP comes at a cost of high compila-

tion time penalty as evident from Figure 7(d). This is expected as

VIM re-compiles the complete circuit many times with re-ordered

gates. The VIM+VQP compilation time was found to be 190X-

568X to GreedyE★ (≈385.8X on average). The overhead was higher

for denser graphs. For denser graphs, the corresponding QAOA-

MaxCut circuit has large number of CPHASE operations. Therefore,

the number of circuit layers is also higher for denser graphs. With

large number of layers, the backend compiler takes more time for

each circuit compilation. Moreover, VIM needs to compile more

number of circuits in each iteration. The branch and bound heuristic

also runs longer which translates to high compilation time.

5 DISCUSSION

Applicability beyond QAOA-MaxCut: The proposed compila-

tion methodologies can be applied to other classes of QAOA in-

stances. VQP can be useful for arbitrary quantum circuits to a varied

extent. VIM can be useful for quantum circuits with large number of

commuting operators such as the UCCSD ansatz for VQE [19, 30].

Compiling higher-depth (𝑝 > 1) QAOA-circuits: Note that,

each level of amulti-level QAOA-circuit has the same set of CPHASE

operations with separate rotation parameters [2, 4, 5, 11, 15, 36]. A

larger circuit generally takes higher compilation time [5] which

can be avoided by compiling QAOA-circuit with the lowest depth

(𝑝 = 1) and repeating the compiled circuit with different rotation

parameters to extend it to a multi-level QAOA-circuit.

VIM solution quality: Note that, the branch and bound heuristic

used in VIM does not offer any provable performance guarantee.

More rigorous optimization algorithm (i.e. simulated annealing

[33]) can replace the proposed heuristic to generate better quality

solutions utilizing the same concept of layer re-ordering.

6 CONCLUSION

We proposed QAOA-tailored circuit compilation policies that ex-

ploit the unique characteristics of QAOA-circuits alongside the

hardware variation-awareness to maximize the performance from

noisy quantum devices. We present two variation-aware compi-

lation procedures - VQP and VIM that can be integrated in any

conventional quantum circuit compiler. We demonstrate ≈8.408X

performance improvement on average over the state-of-the-art

compilation approach for a set of QAOA-MaxCut problems. We

only considered variations in two-qubit gate success probabilities. A

more comprehensive solution should consider all the error sources

together for optimal compilation.

ACKNOWLEDGEMENTS

The work is supported in parts by National Science Foundation

(NSF) (CNS- 1722557, CCF-1718474, DGE-1723687 andDGE-1821766)

and seed grants from Penn State Institute for Computational and

Data Sciences and Penn State Huck Institute of the Life Sciences.

REFERENCES
[1] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2019. Addressing

Temporal Variations in Qubit Quality Metrics for Parameterized Quantum Cir-
cuits. In 2019 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 1–6.

[2] M. Alam, A. Ash-Saki, and S. Ghosh. 2020. Accelerating Quantum Approximate
Optimization Algorithm using Machine Learning. In 2020 Design, Automation
Test in Europe Conference Exhibition (DATE). 686–689.

[3] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. Circuit Com-
pilation Methodologies for Quantum Approximate Optimization Algorithm.
IEEE/ACM International Symposium on Microarchitecture (2020).

[4] M. Alam, A. Ash-Saki, and S. Ghosh. 2020. Design-Space Exploration of Quan-
tum Approximate Optimization Algorithm under Noise. In 2020 IEEE Custom
Integrated Circuits Conference (CICC). 1–4.

[5] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. An Efficient
Circuit Compilation Flow for Quantum Approximate Optimization Algorithm.
IEEE/ACM Design Automation Conference (2020).

[6] Frank Arute, Kunal Arya, Ryan Babbush, Bacon, et al. 2019. Quantum supremacy
using a programmable superconducting processor. Nature 574, 7779 (2019),
505–510.

[7] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. 2019. QURE: Qubit
Re-allocation in Noisy Intermediate-Scale Quantum Computers. In Proceedings
of the 56th Annual Design Automation Conference 2019. ACM, 141.

[8] George S Barron, FACalderon-Vargas, Junling Long, David P Pappas, and Sophia E
Economou. 2020. Microwave-based arbitrary cphase gates for transmon qubits.
Physical Review B 101, 5 (2020), 054508.

[9] Debjyoti Bhattacharjee and Anupam Chattopadhyay. 2017. Depth-optimal quan-
tum circuit placement for arbitrary topologies. arXiv preprint arXiv:1703.08540
(2017).

[10] Debjyoti Bhattacharjee, Abdullah Ash Saki, Mahabubul Alam, Anupam Chat-
topadhyay, and Swaroop Ghosh. 2019. MUQUT: Multi-constraint quantum
circuit mapping on NISQ computers. In 38th IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2019. Institute of Electrical and Electronics
Engineers Inc., 8942132.

[11] Gavin E Crooks. 2018. Performance of the quantum approximate optimization
algorithm on the maximum cut problem. arXiv preprint arXiv:1811.08419 (2018).

[12] Andrew Cross. 2018. The IBM Q experience and QISKit open-source quantum
computing software. In APS Meeting Abstracts.

[13] GyörgyDósa. 2007. The tight bound of first fit decreasing bin-packing algorithm is
FFD (I) 11/9OPT (I)+ 6/9. In International Symposium on Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies. Springer, 1–11.

[14] György Dósa and Jirí Sgall. 2013. First Fit bin packing: A tight analysis. In 30th
International Symposium on Theoretical Aspects of Computer Science (STACS 2013).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[15] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

[16] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Hartmut Neven. 2017. Quan-
tum algorithms for fixed qubit architectures. arXiv preprint arXiv:1703.06199
(2017).

[17] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Leo Zhou. 2019. The
Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick
Model at Infinite Size. arXiv preprint arXiv:1910.08187 (2019).

[18] Edward Farhi and Aram W Harrow. [n.d.]. Quantum supremacy through the
quantum approximate optimization algorithm. arXiv preprint arXiv:1602.07674
([n. d.]).

[19] Harper R Grimsley, Daniel Claudino, Sophia E Economou, Edwin Barnes, and
Nicholas J Mayhall. 2019. Is the Trotterized UCCSD Ansatz Chemically Well-
Defined? Journal of Chemical Theory and Computation (2019).

[20] Jeremy Hsu. 2018. CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy.
IEEE Spectrum Tech Talk (2018).

[21] Julian Kelly. 2018. A preview of Bristlecone, Google’s new quantum processor.
Google Research Blog 5 (2018).

[22] Will Knight. 2018. IBM Raises the Bar with a 50-Qubit Quantum Computer,
News.

[23] Eugene L Lawler and David EWood. 1966. Branch-and-bound methods: A survey.
Operations research 14, 4 (1966), 699–719.

[24] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem
for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1001–1014.

[25] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Mar-
garet Martonosi. 2019. Noise-adaptive compiler mappings for noisy intermediate-
scale quantum computers. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems. 1015–1029.

[26] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari,
Nhung Hong Nguyen, and Cinthia Huerta Alderete. 2019. Full-stack, real-system

quantum computer studies: architectural comparisons and design insights. In
Proceedings of the 46th International Symposium on Computer Architecture. 527–
540.

[27] PrakashMurali, David CMcKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020.
Software mitigation of crosstalk on noisy intermediate-scale quantum computers.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 1001–1016.

[28] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (2018), 79.

[29] Chad Rigetti. 2018. The Rigetti 128-qubit chip and what it means for quantum.
Medium (2018).

[30] Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J
Love, and Alán Aspuru-Guzik. 2018. Strategies for quantum computing molec-
ular energies using the unitary coupled cluster ansatz. Quantum Science and
Technology 4, 1 (2018), 014008.

[31] Vivek V Shende, Stephen S Bullock, and Igor L Markov. 2006. Synthesis of
quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25, 6 (2006), 1000–1010.

[32] Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created
equal: a case for variability-aware policies for NISQ-era quantum computers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 987–999.

[33] Peter JM Van Laarhoven and Emile HL Aarts. 1987. Simulated annealing. In
Simulated annealing: Theory and applications. Springer, 7–15.

[34] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. 2018. Compiling
quantum circuits to realistic hardware architectures using temporal planners.
Quantum Science and Technology 3, 2 (2018), 025004.

[35] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum
circuits to IBM QX architectures using the minimal number of SWAP and H
operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

[36] Leo Zhou, Sheng-TaoWang, Soonwon Choi, Hannes Pichler, andMikhail D Lukin.
2020. Quantum Approximate Optimization Algorithm: Performance, Mechanism,
and Implementation on Near-Term Devices. Physical Review X 10, 2 (2020),
021067.

[37] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An efficient methodol-
ogy for mapping quantum circuits to the IBMQX architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2018).

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 30.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 790
 326
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryList_V1
 qi2base

